




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 统计案例(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1对有线性相关关系的两个变量建立的回归直线方程x中,回归系数()A可以小于0B大于0C能等于0 D只能小于0解析:选A0时,则r0,这时不具有线性相关关系,但可以大于0也可以小于0.2在一线性回归模型中,计算其相关指数R20.96,下面哪种说法不够妥当()A该线性回归方程的拟合效果较好B解释变量对于预报变量变化的贡献率约为96%C随机误差对预报变量的影响约占4%D有96%的样本点在回归直线上解析:选D由相关指数R2表示的意义可知A、B、C三种说法都很妥当,相关指数R20.96,其值较大,说明残差平
2、方和较小,绝大部分样本点分布在回归直线附近,不一定有96%的样本点在回归直线上,故选D.3(湖北高考)已知变量x和y满足关系y0.1x1,变量y与z正相关下列结论中正确的是()Ax与y正相关,x与z负相关Bx与y正相关,x与z正相关Cx与y负相关,x与z负相关Dx与y负相关,x与z正相关解析:选C因为y0.1x1的斜率小于0,故x与y负相关因为y与z正相关,可设zy,0,则zy0.1x,故x与z负相关 4.下表是某厂14月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是0.7x,则()A10.5 B
3、5.15C5.2 D5.25解析:选D样本点的中心为(2.5,3.5),将其代入线性回归方程可解得5.25.5下面的等高条形图可以说明的问题是()A“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C此等高条形图看不出两种手术有什么不同的地方D“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:选D由等高条形图可知选项D正确6根据一位母亲记录儿子39岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为7.19x73.93,若用此方程
4、预测儿子10岁时的身高,有关叙述正确的是()A身高一定为145.83 cmB身高大于145.83 cmC身高小于145.83 cmD身高在145.83 cm左右解析:选D用线性回归方程预测的不是精确值,而是估计值当x10时,y145.83,只能说身高在145.83 cm左右7在22列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大()A.与 B.与C.与 D.与解析:选A当ad与bc相差越大,两个分类变量有关系的可能性越大,此时与相差越大8如图,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是()A相关系数r变大B残差平方和变大C相关指数R2变大D解释变量x与预报变量
5、y的相关性变强解析:选B由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小9已知变量x,y之间具有线性相关关系,其回归方程为3x,若i17,i4,则的值为()A2 B1C2 D1解析:选A依题意知,1.7,0.4,而直线3x一定经过点(,),所以31.70.4,解得2.10两个分类变量X和Y,值域分别为x1,x2和y1,y2,其样本频数分别是a10,b21,cd35.若X与Y有关系的可信程度不小于97.5%,则c等于()A3 B4C5 D6解析:选A列22列联表如下:x1x2总计y1102131y2cd35总计10c21d66故K2的观测值k5.024.
6、把选项A、B、C、D代入验证可知选A.二、填空题(本大题共4小题,每小题5分,共20分)11给出下列关系:人的年龄与他(她)拥有的财富之间的关系;曲线上的点与该点的坐标之间的关系;苹果的产量与气候之间的关系;森林中的同一种树木,其断面直径与高度之间的关系;学生与他(她)的学号之间的关系其中有相关关系的是_(填序号)解析:利用相关关系的概念判断是不确定关系曲线上的点与该点坐标是一种对应关系,即每一个点对应一个坐标,是确定关系学生与其学号也是确定的对应关系答案:12已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线方程是_解析:设回归直线的方程为x.回归直线的斜率的估计值是
7、1.23,即1.23.又回归直线过样本点的中心(4,5),所以51.234,解得0.08,故回归直线的方程为1.23x0.08.答案:1.23x0.0813某单位为了了解用电量y(度)与气温x()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表由表中数据得线性回归方程x,其中2.现预测当气温为4时,用电量的度数约为_用电量y/度24343864气温x/1813101解析:由题意可知(1813101)10,(24343864)40,2.又回归直线2x过点(10,40),故60,所以当x4时,2(4)6068.答案:6814某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血
8、清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用22列联表计算得k3.918,经查对临界值表P(K23.841)0.05.对此,四名同学做出了以下的判断:p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列命题中,正确的是_(填序号)p(綈q);(綈p)q;(綈p綈q)(rs); (p綈r)(綈qs)解析:查对临界值表知P(K23.841)0.05,故有95%的把握认为“这种血清能起到预防
9、感冒的作用”;95%仅是指“血清能起到预防感冒的作用”的可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能,故p真,其余都假结合复合命题的真假可知,选.答案:三、解答题(本大题共4小题,共50分解答时应写出文字说明、证明过程或演算步骤)15(本小题满分12分)某地区在调查一种传染病与饮用水的关系时得到如下数据:饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人画出列联表,并说明能否在犯错误的概率不超过0.10的前提下认为这种疾病与饮用水有关解:依题意得22列联表:得病不得病合计干净水55055不干净水92231总计147286此时,由题中数据可得K2的观测
10、值k5.785,由于5.7852.706,故在犯错误的概率不超过0.10的前提下认为这种传染病与饮用不干净水有关系16(本小题满分12分)某同学6次考试的数学、语文成绩在班中的排名x,y如下表:x765321y13119642对上述数据用线性回归方程x来拟合y与x之间的关系解:由于4,7.5,(xi)(yi)50,(xi)228,那么1.786,7.51.78640.356.此时可得1.786x0.356.17(本小题满分12分)为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:未发病发病总计未注射疫苗20xA注射疫苗30yB总计5050100现从所有试验动物中任取一只,取到“注射
11、疫苗”动物的概率为.(1)求22列联表中的数据x,y,A,B的值;(2)绘制发病率的条形统计图,并判断疫苗是否有效?(3)能够有多大把握认为疫苗有效?附:K2,nabcdP(K2k0)0.050.010.0050.001k03.8416.6357.87910.828解:(1)设“从所有试验动物中任取一只,取到注射疫苗动物”为事件E,由已知得P(E),所以y10,B40,x40,A60.(2)未注射疫苗发病率为,注射疫苗发病率为.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率,且注射疫苗的发病率小,故判断疫苗有效(3)K216.66710.828.所以至少有99.9%的把握认为疫苗有效18(本小题满分14分)在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:年龄x23273941454950脂肪含量y9.517.821.225.927.526.328.2年龄x53545657586061脂肪含量y29.630.231.430.833.535.234.6(1)作出散点图,并判断y与x是否线性相关,若线性相关,求线性回归方程;(2)求相关指数R2,并说明其含义;(3)给出37岁时人的脂肪含量的预测值解:(1)散点图如图所示由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分租合同协议书模板图片
- 信息技术企业政审证明要求
- 5G时代的教育科技革新与前景预测
- 产褥期妇女护理查房
- 医疗健康保险政策的实施效果分析报告
- DB13T 2225-2015 中药材种苗质量标准西陵知母
- 学习者的学习风格差异与教学方法优化
- 做课件的打工人职业
- 小学语文线上教学创新计划
- 儿科心肌病护理查房
- 广西贵百河联考2023-2024学年高一下学期5月月考化学试题(解析版)
- 2023-2024学年人教版八年级下册数学期末复习试题
- 七年级上册语文必背古诗词
- (高清版)JTG 3810-2017 公路工程建设项目造价文件管理导则
- 国开可编程控制器应用形考实训任务四
- 肺栓塞诊断与治疗指南
- 2023年高考语文试卷及答案(浙江卷)
- 综合项目施工现场环境保护管理专项方案
- 餐饮夏季食品安全培训
- 钢结构安装现场应急预案
- 苏教译林版七年级下册英语第二单元Unit2单元测试卷附答案解析
评论
0/150
提交评论