化工原理课程设计乙醇水精馏塔设计_第1页
化工原理课程设计乙醇水精馏塔设计_第2页
化工原理课程设计乙醇水精馏塔设计_第3页
化工原理课程设计乙醇水精馏塔设计_第4页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、化工原理课程设计题目:乙醇水精馏筛板塔设计设计时间:2010、 12、20-2011、 1、6化工原理课程设计任务书(化工 1)一、设计题目 板式精馏塔的设计二、设计任务:乙醇-水二元混合液连续操作常压 筛板精馏塔的设计三、工艺条件生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选回流比:自选加热蒸汽:低压蒸汽单板压降:w 0.7Kpa工艺参数组成浓度(乙醇mol%)塔顶78加料板28塔底0.04四、设计内容1. 确定精馏装置流程,绘出流程示意图。2. 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率, 实际塔板

2、数等。3. 主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。4. 流体力学计算流体力学验算,操作负荷性能图及操作弹性。5. 主要附属设备设计计算及选型塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。料液泵设计计算:流程计算及选型。管径计算。五、设计结果总汇六、主要符号说明七、参考文献八、图纸要求1、工艺流程图一张(A2图纸)2、主要设备工艺条件图(A2图纸)目录前言1 概述 51.1 设计目的 51.2 塔设备简介 62 设计说明书 72.1 流程简介 72.2 工艺参数选择 83 工艺计算 93.1 物料衡算 93.2 理论塔板数的计算 103.2.1 查找各体系

3、的汽液相平衡数据 10如表 3-1 103.2.2 q 线方程 93.2.3 平衡线 113.2.4 回流比 123.2.5 操作线方程 123.2.6 理论板数的计算 123.3 实际塔板数的计算 123.3.1全塔效率 ET 123.3.2 实际板数 NE 134 塔的结构计算 144.1 混合组分的平均物性参数的计算 144.1.1 平均分子量的计算 144.1.2 平均密度的计算 154.2 塔高的计算 164.3 塔径的计算 174.3.1 初步计算塔径 174.3.2 塔径的圆整 184.4 塔板结构参数的确定 184.4.1 溢流装置的设计 184.4.2 塔盘布置(如图 4-4

4、) 184.4.3 筛孔数及排列并计算开孔率 194.4.4 筛口气速和筛孔数的计算 205 精馏塔的流体力学性能验算 215.1 分别核算精馏段、提留段是否能通过流体力学验算 215.1.1 液沫夹带校核 215.2.2 塔板阻力校核 225.2.3 溢流液泛条件的校核 235.2.4 液体在降液管内停留时间的校核 245.2.5 漏液限校核 245.2 分别作精馏段、提留段负荷性能图 245.3 塔结构数据汇总 276 塔的总体结构 287 辅助设备的选择 297.1 塔顶冷凝器的选择 297.2 塔底再沸器的选择 307.3 管道设计与选择 317.4 泵的选型 327.5 辅助设备总汇

5、 .32.、八、一前言化工生产中所处理的原料中间产品几乎都是由若干组分组成的混合物,其中大部分是均相混合物。生产中为满足要求需将混合物分离成较纯的物质。精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂) ,使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很 多方面,要求乙醇有不同的纯度,

6、有时要求纯度很高,甚至是无水乙醇,这是很有困难 的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发 度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此 可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的, 塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必 须从塔底引入上升蒸汽流和从塔顶引入下降液。 可知,单有精馏塔还不能完成精馏操作, 还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备, 才能实

7、现整个操作。1 概述1.1 设计目的蒸馏是分离均相混合物的单元操作,精馏是最常用的蒸馏方式,是组成化工生产过 程的主要单元操作。精馏是典型的化工操作设备之一。进行此次课程设计的目的是为了 培养综合运用所学知识 ,来解决实际化工问题的能力 ,做到能独立进行化工初步设计;掌 握化工设计的基本程序和方法;学会查阅技术资料、选用公式和数据;用简洁文字和图 表表达设计结果;用 CAD 制图以及计算机辅助计算等能力方面得到一次基本训练,为 以后从事设计工作打下坚实的基础。1.2 塔设备简介塔设备是化工、石油化工和炼油等生产中最重要的设备之一,他可以使气 (或汽 )或液液两相紧密接触,达到相际传质及传热的目

8、的。在化工厂、石油化工厂、炼油厂等中, 塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和 环境保护等各方面都有重大影响。塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却 和回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等。最常见的塔设备为板式塔和填料塔两大类。作为主要用于传质过程的塔设备,首先 必须使气(汽)液两相能充分接触,以获得高的传质效率。此外,为满足工业生产的需 要,塔设备还必须满足以下要求: 1、生产能力大; 2、操作稳定,弹性大; 3、流体流 动阻力小; 4、结构简单、材料耗用量少,制造和安装容易; 5、耐腐蚀

9、和不易阻塞,操 作方便,调节和检修容易。在本设计中我使用筛板塔,筛板塔的突出优点是结构简单造价低。合理的设计和适 当的操作筛板塔能满足要求的操作弹性, 而且效率高采用筛板可解决堵塞问题适当控制 漏液。筛板塔是最早应用于工业生产的设备之一, 五十年代之后通过大量的工业实践逐步 改进了设计方法和结构,近年来与浮阀塔一起成为化工生中主要的传质设备。为减少对 传质的不利影响, 可将塔板的液体进入区制成突起的斜台状这样可以降低进口处的速度 使塔板上气流分布均匀。筛板塔多用不锈钢板或合金制成,使用碳钢的比率较少。它的主要优点是: 结构简单,易于加工,造价为泡罩塔的 60 左右,为浮阀塔的 80% 左右;在

10、相同条件下,生产能力比泡罩塔大20%40%;塔板效率较高,比泡罩塔高15% 左右,但稍低于浮阀塔;气体压力降较小,每板降比泡罩塔约低30%左右。缺点是:小孔筛板易堵塞, 不适宜处理脏的、粘性大的和带固体粒子的料液; 操作弹性较小(约 2 3)。2.1 流程简介2 设计说明书料冷0沸cr1r冲繼杜TjA|f 1r2.2工艺参数选择 处理能力:5000T/y,年开工7200小时 进料浓度:Xf=0.15 ( mol%)进料温度:tf=18 C(4)塔顶冷凝水采用12C深井水,塔釜间接蒸汽加热 要求:xd=86 mol %Xw= 1mol %3工艺计算* W3.1物料衡算进料浓度为Xf=0.15 (

11、mol%),则 MF=46*0.15+18*0.85=22.2Kg/KmolF=5000T/y=5000000/(MF*7200)=31.28Kmol/h 由 F=D+WFXf=DXd+WXw得:D=5.152 Kmol/hW=26.128 Kmol/h3.2理论塔板数的计算3.2.1查找各体系的汽液相平衡数据如表3-1表3-1乙醇-水汽液平衡组成温度液相组成气相组成温度液相组成气相组成温度液相组成气相组成x/%y/%x/%y/%x/%y/%1000082.723.3754.4579.357.3268.4195.51.9017.0082.326.0855.8078.7467.6373.8589

12、.07.2138.9181.532.7359.2678.4174.7278.1586.79.6643.7580.039.6561.2278.1589.4389.4385.312.3847.0479.850.9765.6484.116.6150.8979.751.9865.993.2.2 q线方程18C进料:查物性数据:易挥发组分比热 C1= 2.453 kJ/kgK难挥发组分比热C2= 4.184kJ/kgK易挥发组分汽化潜热口= 902 kJ/kgK难挥发组分汽化潜热2= 2458 kJ/kgK进料温度tiC,进料组成对应的泡点温度t2 = _83 C则平均r =zf ri*M 轻组分 +(

13、1- Zf) r2*M 重组分=0.15*902*46+0.85*2458*18=43831.2 KJ/Kmol平均 Cp= Zf C1*M 轻组分 +(1- Zf) C2*M 重组分=0.15*2.453*46+85*4.184*18=80.941KJ/KmolK得 q= (cp* 4+r) /r=80.941*(83-18)+43831.2/43831.2=1.119则 q 线方程:yx=9.396x-1.259q 1 q 13.2.3平衡线根据表3.1作出平衡线图,并画出理论塔板数,如图3-1和3-2。)2申0.17?图3-2乙醇一水的气液平衡局部放大图324回流比由 0.259=XD/

14、(Rmin + 1)得最小回流比Rmin = 2.32又 R= ( 1.1-1.8) Rmin取回流比R=43.2.5操作线方程精馏段操作线方程为:R1yn 1XnXdR 1R 1=0.8Xn+0.2XD提馏段操作线方程为:yL qF XWXym 1XmXWL qF WL qF W=1.887xm-0.008873.2.6理论板数的计算用作图法(如图 3-1),总塔板数=20+(0.0241-0.01)/(0.0241-0.0036)=20.69块 第19块板与q线相交,为进料板。精馏段理论板数=J8_,第19块为进料板提馏段=2.69总理论板数Nt= 20.693.3实际塔板数的计算3.3.

15、1全塔效率ET塔顶xd=0.86查表得平衡温度t=78.21 C塔底xw=0.01查表得平衡温度t=97.63C平均粘度的计算:塔顶塔底平均温度t=87.92C,查得乙醇粘度Pi=0.39mPa/s,图3-2 O conne关联图水的粘度也=0.3242mPa/s则 gv= Mf+ 空(1-XF) =0.39*0.15+0.3242*0.85=0.334查得平均温度下的平衡组分:x=0.0937, y=0.0433,又:y=a(/1+( a1)x得:a=7.388由 a av=2.47,查O conne关联图(图3-2)得全塔效率Et=38%3.3.2实际板数NeNe=Nt/Et=20.69/

16、38%=54.4 块表3-1塔内气液流率汇总气相流率(kmol/h)液相流率(kmol/h)精馏段25.7620.608提馏段29.4855.64塔的结构计算板式塔主要尺寸的设计计算,包括塔高、塔径的设计计算,板上液流形式的选择、 溢流装置的设计,塔板布置、气体通道的设计等工艺计算。板式塔为逐级接触式的气液传质设备,沿塔方向,每层板的组成、温度、压力都不 同。设计时,分别计算精馏段、提馏段平均条件下的参数作为设计依据,以此确定塔的 尺寸,然后再作适当调整,但应尽量保持塔径相同,以便于加工制造。4.1混合组分的平均物性参数的计算4.1.1平均分子量的计算(1) 塔顶的平均分子量(xi为与yi=X

17、D平衡 的液相组成)M vdm = Xd X M轻组分+ (1 Xd) X M重组分0.86 46 0.14 18 42.08Kg/KmolM LDM = X1 X M 轻组分 + ( 1 X1 ) X M 重组分0.8523 460.1477 1841.864Kg / Kmol(2) 进料板的平均分子量进料板对应的组成Xn和ynM vfm = yn X M轻组分+ (1 yn) X M重组分0.4587 460.5413 1830.844Kg / KmolM LFM= Xn X M轻组分+ ( 1 Xn)X M重组分0.1132 46 0.8868 1821.170Kg / Kmol(3)

18、塔底的平均分子量(yw为与xw平衡的气相组成)M vwm = ywX M轻组分+ ( 1 yw)X M重组分0.0975 46 0.0025 18 20.73Kg/KmolM LWM = Xw X M 轻组分 + ( 1 Xw) X M重组分0.01 460.99 1818.28Kg / Kmol(4) 精馏段、提馏段的平均分子量精馏段平均分子量Mlm ( Mldm Mlfm)/231.517Kg / KmolM vm ( M vdm M vfm)/236.462 Kg / Kmol提馏段平均分子量Mlm ( M LWM M lfm )/219.725Kg / KmolM vm ( M vwm

19、 M vfm )/225.787Kg / Kmol4.1.2平均密度的计算(1) 液相平均密度查物性数据:易挥发组分密度p= 790 Kg/m3难挥发组分密度 p =998.595 Kg/ m3塔顶易挥发组分质量百分比 自=94.11%进料易挥发组分质量百分比32= 24.598% 塔底易挥发组分质量百分比a3= 2.516%塔顶液相密度:pd = 1/a1/ p+(1-31) / p= 800.008Kg/ m3 进料液相密度:pf = 1/a2/ p+(1-a2) / p= 937.69Kg/ m3塔底液相密度:pw = 1/a3/ p+(1-a3) / p= 922.005Kg/ m3

20、精馏段的平均液相密度:pm = ( pD+ pF)/2=868.849Kg/ m3提馏段的平均液相密度:plm = ( pF+ pw)/2=964.85Kg/ m3(2) 汽相平均密度根据塔顶组成查平衡数据计算塔顶温度Td=78.21C根据进料板组成查平衡数据计算进料板温度Tf=8585C根据塔底组成查平衡数据计算塔底温度Tw = 97.63C精馏段:Tm= (Tf+Td) /2=82.03CpM = PMv/RTM=1.456Kg/ m3 提馏段:Tm= (Tf+Tw) /2=91.74CpvM = PM v/RT M=1.16K4g/ m3表4-1塔内气液流率汇总气相流率(m3/h)液相流

21、率(m3/h)精馏段750.6240.7475提馏段882.491.10554.2塔高的计算板式塔的有效高度是指安装塔板部分的高度,按下式计算:NTZ (-L 1)Htet式中 Z塔的有效高度,m;Et全塔总板效率;Nt 塔内所需的理论板层数;Ht塔板间距,m。Ht的初选选取时应考虑塔高、塔径、物系性质、分离效率、操作弹性及塔的安装检修等因素。表4-2塔板间距与塔径的关系塔径/D, m0.3 0.50.5 0.80.8 1.61.6 2.42.4 4.0板间距/Ht , mm200300250350300450350600400600化工生产中常用板间距为:200, 250, 300, 350

22、, 400, 450, 500, 600, 700, 800mm。在决定板间距时还应考虑安装、检修的需要。此设计中我取 HT=300mm4.3塔径的计算计算塔径的方法有两类:一类是根据适宜的空塔气速,求出塔截面积,即可求出塔 径。另一类计算方法则是先确定适宜的孔流气速,算出一个孔(阀孔或筛孔)允许通过 的气量,定出每块塔板所需孔数,再根据孔的排列及塔板各区域的相互比例,最后算出 塔的横截面积和塔径。本次数据采用第一种方法。4.3.1初步计算塔径精馏段:0J50030,040侧图4-1史密斯关联图II图中V丄分别为塔内气、液两相体积流量,m3/s;气、液相的密度,kg/m35SB5S: MSiB

23、lIiniip L分别为塔内由:汁1/2-CC2o(五ggFmaxC=1.8266m/s,又 u (0.6 0.8)umax0.02624,查图 4-1 得,C2o=O.O6又有精馏段平均温度Tm=82.03查得乙醇和水的表面张力分别为:(n=0.0168N/m, o2=0.06257N/m,从而算出混合液体的表面张力c =0.04N/m=0.470m取 u=1.2m/s,贝U D/提馏段:与精馏段同样的方法算得塔的直径为 0.4165m 4.3.2塔径的圆整综合精馏段与提留段,圆整后的塔径取 500mm4.4塔板结构参数的确定4.4.1溢流装置的设计溢流装置包括降液管、溢流堰、授液盘等几个部

24、分,是液体的通道,其结构和尺寸对塔 的性能有着重要影响。A降液管截面积AfB溢流堰包括堰高hw、堰长lw及howC受液盘和底隙h0图4-2溢流装置图4-3塔盘布置4.4.2塔盘布置(如图 4-4)A受液区或降液区A仁0.01396m2B入口安定区和出口 安定 区 Ws= 50 mmC边缘区Wc=30 mmD有效传质区:塔板上布置有筛孔的区域,称有效传质区,面积为 Aa 结合我的设计任务,由于流量较小,我选用U型塔板,如图4-4:图4-4 U形流型参数选择,取:hb=30mm,hw=50mm,lw=200mm.在 CAD 软件中求得:AT=0.19625m2,AF=0.01396m2,Aa=0.

25、1185m2 则 Af/At=0.07,在(0.06,0.12)的范围内。2/33 qVLhhow 2.84 10 E -Iw=6.84mm6mm,符合要求。4.4.3筛孔数及排列并计算开孔率P =取孔径d0=6mm,开孔率取0.1,带入上述公式,得出孔距t=18mm,t/do=3,在(2.5,5)范围内,符合基本要求。444筛口气速和筛孔数的计算qvvsUo-AonAoAan 2.20.785d。訂。精馏段和提馏段的筛口气速和筛孔数分别用上述公式计算,得出:精馏段 uo=17.6m/s, n=419.2 个提馏段 u0=20.7m/s, n=419.2 个所以筛孔数取420个。1qmLqmv

26、1.044-二迄点百分率T H :融0(X)10.003 0.015精馏塔的流体力学性能验算5.1分别核算精馏段、提留段是否能通过流体力学验算5.1.1液沫夹带校核qVLs LqVVs 7,查图 5-1图5-1液沫夹带关联图丄(一)八 1/20.02624由V V,得书=0.11将数据带入上述公式,得出精馏段ev=0.0734kg液/kg电.1kg液/kg同样的方法,可得出精馏段 ev=0.0909kg液/kg电.1kg液/kg则液沫夹带校核通过。522塔板阻力校核hphf h精馏段的踏板阻力校核:干板阻力由 do=6mm,查图 5-2G)孔流系数090.80.70.6-50Jr4810得,孔

27、流系数Co=O.65ho带入公式Pf,o 1Lg2g L液层阻力图5-2塔板孔流系数2UoC0 ,得 h0=0.0473 m液柱Aa=(1-2A d/A T)=0.16833m2Fa=Vs/A a( p)2=1.495根据Fa,查图5-3dJSLO图5-3充气系数图得,B =0.59,则hL= B (hw+how)=0.59*(0.05+0.00684)=0.03354m液柱液体表面张力所造成阻力非常之小,此项可以忽略不计故气体流经一层浮阀塔塔板的压力降的液柱高度为:hp =0.0473+0.03354=0.08084m 液柱=0.08084*868.849*9.8=0.688Kp(0.7K

28、符合设计要求)题馏段的踏板阻力校核方法同上,最后得出hp =0.0645Kp(0.7K巳,符合设计要求综上所述,塔板阻力校核通过。5.2.3溢流液泛条件的校核HdP2 PlLghd精馏段:液面落差一般较小,可不计。液体通过降液管阻力 hd,包括底隙阻力 hd1和进口堰阻力hd22hd=hd1+hd2=0.0153(LS/l Whb) +0=0.000183mHd=hw+how+A +(R-P2)/ Lg+hd=0.139m对于一般物系,?值可取0.5,对于不易起泡物系,?值约为0.60.7,对于易起泡 物系,?可取值0.30.4。乙醇-水属于不易起泡物系,?取0.5。贝U Hd/?=0.278

29、mHT+hw题馏段方法同上得,Hd/?=0.263m5s题馏段 t=AdHT/Ls=0.01396*0.3/0.00030700=13.6s5s则液体在降液管内停留时间的校核通过。5.2.5漏液限校核精馏段h0 0.0056 0.13 hW hbWh=0.0073mrUo Co *2g ho VV=6.006m/sk=u0/u0=17.6/6=2.932提馏段用同样的方法得,k=U0/u0=20.7/7.0775=2.922综上所述,漏液限校核通过。5.2分别作精馏段、提留段负荷性能图(1)负荷性能图的其它几条曲线的依据分别是 雾沫夹带线泛点率=1.36LsZlKCf100%据此可作出负荷性能

30、图中的物沫夹带线。按泛点率80%计算精馏段0.81 456Vs1.36Ls 0.44.868.849-1.4561 0.126 0.11846整理得:0.1194=0.4097Vs+5.984Ls提馏段I 1.1644Vs,1.36Ls 0.44964.85-1.16440.8 1 0.126 0.11846整理得:0.1194=0.3476Vs+5.984Ls 液泛线根据 Ht hwhp+hL+hd hc+h|+h +hL+hd确定液泛线,由于h很小,故忽略式中的h3.41 102nd;4.26 10 3 51.18 10 8l WLhHt(1.5)hW精馏段:代入数据得:2.4996*10

31、-7Vh2+57.893Lh2/3+0.03278Lh2=0.1 提馏段:代入数据得:1.8000*10-7Vh2+57.893Lh2/3+0.03278Lh2=0.1 液相负荷上限线 全塔LS,max在降液管中停留时间5s时求出Vh 720HtA 720 0.3 0.01396 3.02 漏液线h。0.0056 0.13 hw how h 0.0056 0.13 (0.05 0.006) 0.01288 液相负荷下限线以堰上液层高度how=0.006m计。Lh 3.07lw 3.07 0.02 0.061分别作出精馏段和提馏段的踏板负荷性能图,如图5-4,图5-5十液相下限线 -$夜相上限线

32、漏液线 液沫夬带线液泛线 亠工作点图5-4精馏段踏板负荷性能图f液相下限线 亠液相上限线漏夜线 液沫夬带线F液泛线 亠工作点图5-5提馏段踏板负荷性能图由塔板负荷性能图可以看出:1. 在任务规定的气液负荷下的操作点p (设计点)处在适宜的操作区内的适中位置2. 塔板的气相负荷上限完全由液沫夹带控制,操作下限由漏液控制。3. 按固定的液气比,由图查出塔板的气相负荷上限VsMAx=0.31(0.4)m3/s气相负荷下限 VsMIN=0.125(0.15)m3/s所以,精馏段操作弹性=0.31/0.125=2.48 提留段操作弹性=0.4/0.15=2.67。5.3塔结构数据汇总表5-1塔结构数据汇

33、总项目符号单位计算数备注精馏段提馏段塔径Dm0.50.5板间距Htm0.30.3塔板类型U形流型降液管空塔气速um/s1.061.25堰长lWm0.20.2堰咼hwm0.0500.050板上液层咼度hLm0.070.07降液管底隙高hbm0.0300.030堰上方液头高度howm0.006840.00684阀空气速Uom/s17.620.7降液管面积Afmm20.013960.01396塔盘面积Atmm20.196250.19625孔心距tm0.0180.018孔径d0m0.0060.006孔为正三角形式排列单板压降PpPa688645降液管内清液曾咼度Hdm0.1390.1316塔的总体结构

34、6.1塔体总高度板式塔的塔体总高度(不包括裙座)由下式决定:H Hd (Np 2 S) Ht S Ht Hf HbHd塔顶空间,0.5m;Hb塔底空间,0.5m;Ht塔板间距,0.3m;Ht开有手孔的塔板间距,0.4m;Hf进料段高度,0.6m;Np实际塔板数,54;S人孔数目,6个。总体高度为 H=0.5+(54-2-6)*0.3+6*0.4+0.6+0.8=18.1m6.2塔板结构上式中:塔板类型按结构特点可分为整块式或分块式两种般,塔径于O胡 从300900mm时采用整块式塔板;当塔径在800mm以上时,人已能在塔内进行拆装操 作,无须将塔板整块装入。本设计中塔径为 500m m,所以采

35、用整块式塔板7辅助设备的选择表7-1换热器结果列表换热器名称介质温度,c进出塔顶冷凝器壳程乙醇-水混合气体78.21 C78.21 C管程循环冷凝水1240塔底再沸器管程乙醇-水溶液83 C87 C壳程蒸汽168C168C7.1塔顶冷凝器的选择查第四章传热表4-8:取总传热系数K= 800_W/m2C塔顶温度TD=78.21 C ,查得:易挥发组分汽化潜热ri=600kJ/kg;难挥发组分汽化潜热r2=2312.2kJ/kgrD=ri x y1+r2X (1-y1)=600*0.86+2312.2*0.14=839.7kJ/kgQ=(R+1)Dd得:Q=(4+1)* (5.152*42.08/

36、3600) *839.7=252.84kJ/st1 t2 tm.t1ln t2(78.21 12) (7821 40)50.93 C,(78.21 12) In(78.2140)传热面积:A= K tm=252.84*1000/(800*50.93)=6.2m2选型:则该换热器的公称面积为 7m2,型号G273I25 7。其参数如表7-2:7.2塔底再沸器的选择查第四章传热表4-8:取总传热系数K = 3000 W/m2C塔底温度Tw=97.63 C ,查得:易挥发组分比热C1 = 3JkJ/kgK难挥发组分比热C2=生25 kJ/kgK易挥发组分汽化潜热r1 =680kJ/kg难挥发组分汽化潜热r1 =2264.5kJ/kg n平均 CpCpi xii 1=4.25*0.99+3.8*0.01=4.2455kJ/k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论