说明书.doc

重载搬运机器人本体结构设计【六自由度机械手】【10张CAD图纸】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共92页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:115295099    类型:共享资源    大小:2.68MB    格式:ZIP    上传时间:2021-02-24 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
六自由度机械手 重载 搬运 机器人 本体 结构设计 自由度 机械手 10 CAD 图纸
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:1064457796 或 1304139763】 =============================喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:1064457796 或 1304139763】 =============================

内容简介:
XX学院毕业设计说明书(论文)作 者:学 号:学院(系):专 业:题 目:重载搬运机器人本体结构设计【六自由度机械手】 2015 年5月76毕业设计说明书(论文)中文摘要机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词: 结构设计,机器臂,关节型机械手,结构分析毕业设计说明书(论文)外文摘要AbstractThe robot is a typical mechatronic products, spray painting robot is a hot research field of the robot. Study on the spray painting robot requires a combination of mechanical, electronic, information theory, artificial intelligence, biology and computer science knowledge, at the same time, its development has promoted the development of these disciplines.In this paper, a design of arm structure used in the painting robot, and complete the general assembly drawing and part drawing. Requirements for the mechanics analysis of the robot model, estimate required on each joint torque and power, complete motor and reducer selection. Secondly, from the motor and reducer connection and fixation of joint structure, design, and the mechanism of important connections check the strength. Keywords :Structure design, Robot arm, Structure analysis目 录1 绪论11.1 引言11.2 搬运机械手研究概况21.2.1 国外研究现状21.2.2 国内研究现状31.4 搬运机械手的总体结构41.5 主要内容42 总体方案设计52.1 机械手工程概述52.2 工业机械手总体设计方案论述62.3 机械手机械传动原理72.4 机械手总体方案设计72.5 本章小结93 机械手大臂结构设计13.1 大臂部结构设计的基本要求13.2 大臂部结构设计23.3 大臂电机及减速器选型23.4 减速器参数的计算33.5承载能力的计算73.5.1 柔轮齿面的接触强度的计算73.5.2 柔轮疲劳强度的计算73.6 轴的计算校核83.7 大臂的平衡设计113.7.1 弹簧的受力分析113.7.2 弹簧的设计计算144机械手小臂结构设计184.1 腕部设计184.2 小臂部结构设计314.3 小臂电机及减速器选型314.3.1.传动结构形式的选择324.3.2.几何参数的计算324.4 凸轮波发生器及其薄壁轴承的计算334.4.1柔轮齿面的接触强度的计算344.4.2柔轮疲劳强度的计算354.5 轴结构尺寸设计364.6 轴的受力分析及计算364.7 轴承的寿命校核375机械手机身结构设计405.1 步进电机选择405.2 齿轮设计与计算455.3 轴的设计与计算525.4 轴承的校核605.5 键的选择和校核635.6 机身结构的设计646 控制系统硬件设计656.1 控制系统模式的选择656.2 控制系统的搭建657 控制系统软件设计697.1 预期的功能697.2 实现方法69总结与展望73致 谢74参 考 文 献751 绪论1.1 引言 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。机械手是搬运机械手的一种。1959年,世界上诞生了第一台工业机械手,开创了机械手发展的新纪元。随着科学技术的发展,搬运机械手的研究与应用迅猛发展。世界著名机械手专家、日本早稻田大学的加藤一郎教授说过:“机械手应当具有的最大特征之一是功能”。其中双足是方式中自动化程度最高、最为复杂的动态系统。伟大的发明家爱迪生也曾说过这样一句话:“上帝创造人类,两条腿是最美妙的杰作”。系统具有非常丰富的动力学特性,对的环境要求很低,既能在平地上,也能在非结构性的复杂地面上,对环境有很好的适应性。功能的具备为扩大机械手的应用领域开辟了无限广阔的前景。研究机械手的原因和目的,主要有以下几个方面:希望研制出机构,使它们能在许多结构和非结构环境中,以代替人进行作业或延伸和扩大人类的活动领域;希望更多得了解和掌握人类得特性,并利用这些特性为人类服务,例如:人造假肢。系统具有丰富的动力学特性,在这方面的研究可以拓宽力学及机械手的研究方向;机械手可以作为一种智能机械手在人工智能中发挥重要的作用。,搬运机械手的定义,世界各国尚未统一,分类也不尽相同。最近联合国国际标准化组织采纳了美国机械手协会给搬运机械手下的定义:搬运机械手是一种可重复编程的多功能操作装置,可以通过改变动作程序,来完成各种工作,主要用于搬运材料,传递工件。参考国外的定义,结合我国的习惯用语,对搬运机械手作如下定义:搬运机械手是一种机体独立,动作自由度较多,程序可灵活变更,能任意定位,自动化程度高的自动操作机械。是可进行自动喷漆或关节其他涂料的工业机械手。搬运机械手以刚性高的手臂为主体,与人相比,可以有更快的运动速度,可以搬运更重的东西,而且定位精度相当高,它可以根据外部来的信号,自动进行各种操作。搬运机械手是在计算机控制下可编程的自动机器。采用搬运机械手是提高产品质量与劳动生产率,实现生产过程自动化,改善劳动条件,减轻劳动强度的一种有效手段。机械手的诞生和发展虽只有30多年的历史,但它已应用到国民经济,民事技术等众多的领域,具有广阔的应用和发展前景,显示出强大的生命力1-2。1.2 搬运机械手研究概况1.2.1 国外研究现状最早系统地研究人类和动物运动原理的是Muybridge,他发明了电影用的独特摄像机,即一组电动式触发照相机,并在1877年成功地拍摄了许多四足动物和奔跑的连续照片。后来这种采用摄像机的方法又被Demeny用来研究人类的运动。从本世纪30年代到50年代,苏联的Bernstein从生物动力学的角度也对人类和动物的机理进行深入的研究,并就运动作了非常形象化的描述。真正全面、系统地开展机械手的研究是始于本世纪60年代迄今,不仅形成了机械手一整套较为完善的理论体系,而且在一些国家,如日本、美国和苏联等都已研制成功了能静态或动态的机械手样机。这一部分,我们主要介绍队60年代到1985年这一时期,在机械手领域所取得的最重要进展。在60年代和70年代,对机械手控制理论的研究产生了3种非常重要的控制方法,即有限状态控制、模型参考控制和算法控制。这3种控制方法对各种类型的机械手都是适用的。有限状态控制是由南斯拉夫的Tomovic在1961年提出来的 ,模型参考控制是由美国的Farnsworth在1975年提出来的,而算法控制则是由南斯拉夫米哈依罗鲍宾研究所著名的机械手学专家Vukobratovic博士在1969年至1972年问提出来的。这3种控制方法之间有一定的内在联系。有限状态控制实质上是一种采样化的模型参考控制,而算法控制则是一种居中的情况1。在步态研究方面,苏联的Bessonov和Umnov定义了“最优步态”,Kugushev和Jaro-shevskij定义了自由步态。这两种步态不仅适应于而且也适应于多足机械手。其中,自由步态是相对于规则步态而言的。如果地面非常粗糙不平,那么机械手在时,下一步脚应放在什么地方,就不能根据固定的步序来考虑,而是应该象登山运动员那样走一步看一步,通过某一优化准则来确定,这就是所谓的自由步态。在机械手的稳定性研究方面,美国的Hemami等人曾提出将系统的稳定性和控制的简化模型看作是一个倒立振子(倒摆),从而可以将的前进运动解释为使振子直立的问题。此外,从减小控制的复杂性考虑,Hemami等人还曾就机械手的“降阶模型”问题进行了研究。前面我们曾指出Vukobratovic也对类人型系统进行了能量分析,但他仅限于导出各关节及整个系统的功率随时间的变化关系,并没有过多地涉及能耗最优这个问题但在他的研究中,Vukobratovic得出了一个有用的结论,即姿态越平滑,类人型系统所消耗的功率就越少。1.2.2 国内研究现状国内机械手的研制工作起步较晚,我国是从20世纪80年代开始机械手领域的研究和应用的。1986年,我国开展了“七五”机械手攻关计划,1987年,我国的“863”高技术计划将机械手方面的研究开发列入其中。目前我国从事机械手研究与应用开发的单位主要是高校和有关科研院所等。最初我国进行机械手技术研究的主要目的是跟踪国际先进的机械手技术,随后取得了一定的成就。哈尔滨工业大学自1986年开始研究机械手,先研制成功静态双足机械手HIT-I,高 110cm,重70kg,有10个自由度,实现平地上的前进、左右侧行以及上下楼梯的运动,步幅45cm,步速为10秒/步,后来又相继研制成功了HIT-II和HIT-III,重42kg,高 103cm,有12个自由度,实现了步长24cm,步速2.3步每秒的。目前正在研制的HI下IV机械手,全身可有52个自由度,其在运动速度和平衡性方面都优于前三型机械手37。国防科技大学在1988年春成功地研制了一台平面型6自由度的双足机械手KDW-1,它能前进、后退和上下楼梯,最大步幅为40cm,步速为4步每秒,1989年又研制出空间型 KDW-II,有10个自由度,高69cm,重13kg实现进退、上下台阶的静态稳定以及左右的准动态。1990年在KDW-II的平台上增加两个垂直关节,发展成KDW-III,有12个自由度,具备了转弯功能,实现了实验室环境的全方位。1995年实现动态,步速0.8步每秒,步长为20cm22cm,最大斜坡角度达13度。2000年底在KDW-III的基础上研制成功我国首台仿人形机械手“先行者”,动态,可在小偏差、不确定的环境,周期达每秒两步,高1.4m,重20kg,有头、眼、脖、身躯、双臂、双足,且具备一定的语言功能813。此外,清华大学正在研制仿人形机械手THBIP-I,高1.7m,重130kg,32个自由度,在清华大学985计划的支持下,项目也在不断取得进展。南京航空航天大学曾研制了一台8自由度空间型机械手,实现静态功能13,14。本课题源于“第一届全国大学生机械创新设计大赛”中机械手。目前,机械手大多以轮子的形式实现功能阶段。真正模仿人类用腿走路的机械手还不多,虽有一些六足、四足机械手涌现,但是机械手还是凤毛麟角。我们这个课题,探索设计仅靠巧妙的机械装置和简单的控制系统就能实现模拟人类的机械手。其分功能有:交替迈腿、摇头、摆大臂、摆小臂。1.4 搬运机械手的总体结构搬运机械手的组成及各部分关系概述:它主要由机械系统(执行系统、驱动系统)、控制检测系统及智能系统组成。(1) 执行系统:执行系统是搬运机械手完成关节工件,实现各种运动所必需的机械部件,它包括手部、腕部、机身等。(a) 末端执行器:机械手为了进行作业而配置的操作机构,直接喷漆工件。(b) 腕部:又称手腕,是连接手部和臂部的部件,其作用是调整或改变末端执行器的工作方位。(c) 臂部:联接机座和手部的部分,是支承腕部的部件,作用是承受工件的管理管理荷重,改变手部的空间位置,满足机械手的作业空间,将各种载荷传递到机座。(d) 机身:机械手的基础部分,起支撑作用,是支撑手臂的部件,其作用是带动臂部自转、升降或俯仰运动。(2) 驱动系统:为执行系统各部件提供动力,并驱动其动力的装置。常用的有机械传动、机电传动、气压传动和电传动。(3) 控制系统:通过对驱动系统的控制,使执行系统按照规定的要求进行工作,当发生错误或故障时发出报警信号。(4) 检测系统:作用是通过各种检测装置、传感装置检测执行机构的运动情况,根据需 要反馈给控制系统,与设定进行比较,以保证运动符合要求。 实践证明,搬运机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途4-8。1.5 主要内容第1章 绪论 主要介绍机械手的相关知识和本课题研究的任务和要求.第2章 总体方案设计,介绍该机械手各部分的相关知识和总体设计.第3章 机械手各部分设计的介绍第4章 机械手结构设计2 总体方案设计2.1 机械手工程概述机械手工程是一门跨学科的综合性技术,它涉及到力学、机构学、机械设计、气动液压技术、传感技术、计算机技术和自动控制技术等学科领域。人们将已有学科分支中的知识有效地组合起来用以解决综合性的工程问题的技术称之为“系统工程学”。以机械手设计为例,系统工程学认为,应当将其作为一个系统来研究、开发和运用,从机械手的整体出发来研究其系统内部各组成部分之间的有机联系和系统外部环境的相互关系的一种综合性的设计方法。从系统功能的观点来看,将一部复杂的机器看成是一个系统,它由若干个子系统按一定规律有机地联系在一起,是一个不可分的整体。如果将系统拆开、则将失去作为一个整体的特定功能。因此,在设计一部较复杂的机器时,从机器系统的概念出发,这个系统应具有如下特性:(1) 整体性 由若干个不同性能的子系统构成的一个总的机械系统应具有作为一个整体的特定功能。(2) 相关性 系统内各子系统之间有机联系、有机作用,具有某种相互关联的特性。(3) 目的性 每个系统都应有明确的目的和功能,系统的结构、系统内各子系统的组合方式决定于系统的目的和功能。(4) 环境适应性 任何一个系统都存在于一定的环境中,必须能适应外部环境的变化。因此,在进行机械手设计时,不仅要重视组成机械手系统的各个部件、零件的设计,更应该按照系统工程学的观点,根据机械手的功能要求,将组成机械手系统的各个子系统部件、零件合理地组合,设计出性能优良适于工作需要的机械手产品。在比较复杂的工业机械手系统中大致包括如下:操作机,它是完成机械手工作任务的主体,包括机座、手臂、手腕、末端执行器和机构等。驱动系统,它包括作为动力源的驱动器,驱动单元,伺服驱动系统由各种传动零、部件组成的传动系统。控制系统,它主要包括具有运算、存储功能的电子控制装置(计算机或其他可编程编辑控制装置),人机接口装置(键盘、示教盒等),各种传感器的信息放大、传输和处理装置,传感器、离线编程、设备的输入/输出通讯接口,内部和外部传感器以及其他通用或专用的外围设备14。工业机械手的特点在于它在功能上的通用性和重新调整的柔性,因而工业机械手能有效地应用于柔性制造系统中来完成传送零件或材料,进行装配或其他操作。在柔性制造系统中,基本工艺设备(如数控机床、锻压、焊接、装配等生产设备)、辅助生产设备、控制装置和工业机械手等一起形成了各种不同形式地工业机械手技术综合体地工业机械手系统。在其他非制造业地生产部门,如建筑、采矿、交通运输等生产领域引用机械手系统亦是如此。2.2 工业机械手总体设计方案论述(一) 确定负载目前,国内外使用的工业机械手中,负载能力的范围很大,最小的额定负载在5N以下,最大可达9000N。负载大小的确定主要是考虑沿机械手各运动方向作用于机械接口处的力和扭矩。其中应包括机械手末端执行器的重量、关节工件或作业对象的重量和规定速度和加速度条件下,产生的惯性力等。由本次设计给的设计参数可初估本次设计属于小负载。(二) 驱动方式由于伺服电机具有控制性能好,控制灵活性强,可实现速度、位置的精确控制,对环境没有影响,体积小,效率高,适用于运动控制要求严格的中、小型机械手等特点,故本次设计采用了伺服电机驱动(三)传动系统设计机械手传动装置中应尽可能做到结构紧凑、重量轻、转动惯量和体积小,在传动链中要考虑采用消除间隙措施,以提高机械手的运动和位置控制精度。在机械手中常采用的机械传动机构有齿轮传动、蜗杆传动、滚珠丝杠传动、同步齿形带传动、链传动、行星齿轮传动、谐波齿轮传动和钢带传动等,由于齿轮传动具有效率高,传动比准确,结构紧凑、工作可靠、使用寿命长等优点,且大学学习掌握的比较扎实,故本次设计选用齿轮传动。(四)工作范围工业机械手的工作范围是根据工业机械手作业过程中操作范围和运动轨迹来确定,用工作空间来表示的。工作空间的形状和尺寸则影响机械手的机械结构坐标形式、自由度数和操作机各手臂关节轴线的长度和各关节轴转角的大小及变动范围的选择(五) 运动速度机械手操作机手臂的各个动作的最大行程确定后,按照循环时间安排确定每个动作的时间,就能进一步确定各动作的运动速度,用m/s或()/s表示,各动作的时间分配要考虑多方面的因素,例如总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等。应试做各动作时间的分配方案表,进行比较,分配动作时间除考虑工艺动作的要求外,还应考虑惯性和行程的大小,驱动和控制方式、定位方式和精度等要求。2.3 机械手机械传动原理该方案结构设计与分析该搬运机械手的本体结构组成如图搬运机械手本体组成各部件组成和功能描述如下: 底座部件: 底座部件包括底座、齿轮传动部件、轴承,步进电机等。机座作用是支撑部件,支承和转动大臂部件,承受搬运机械手的全部重量和工作载荷,所以机座应有足够的强度、刚度和承载能力。另外机座还要求有足够大的安装基面,以保证搬运机械手工作时的稳定运行。 搬运机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动手臂分为大臂和小臂。大臂部件:包括大臂和齿轮传动部件,驱动电机。小臂部件:包括小臂、传动轴、同步传动带等,在小臂一端固定驱动手腕运动的步进电机。手腕部件:包括手腕壳体、传动齿轮和传动轴、机械接口等。2.4 机械手总体方案设计工业机械手的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下3。(1) 直角坐标机械手结构 直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1(a)由于直线运动易于实现全闭环的位置控制,所以,直角坐标机械手有可能达到很高的位置精度(m级)。但是,这种直角坐标机械手的运动空间相对机械手的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机械手的结构尺寸要比其他类型的机械手的结构尺寸大得多。直角坐标机械手的工作空间为一空间长方体。直角坐标机械手主要用于装配作业及搬运作业,直角坐标机械手有悬臂式,龙门式,天车式三种结构。(2) 圆柱坐标机械手结构圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1(b)。这种机械手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。(3) 球坐标机械手结构球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1(c)。这种机械手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。(4) 关节型机械手结构关节型机械手的空间运动是由三个回转运动实现的,如图2-1(d)。关节型机械手动作灵活,结构紧凑,占地面积小。相对机械手本体尺寸,其工作空间比较大。此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机械手。关节型机械手结构,有水平关节型和垂直关节型两种。(a) 直角坐标型 (b) 圆柱坐标型 (c) 球坐标型 (d) 关节型图2-1 四种机械手坐标形式根据任务书要求和具体实际我们选择的是(d) 关节型。具体到本设计,因为设计要求搬运的加工工件的质量达5KG,同时考虑到数控机床布局的具体形式及对机械手的具体要求,考虑在满足系统工艺要求的前提下,尽量简化结构,以减小成本、提高可靠度。该机械手手臂运动范围大,且有较高的定位准确度,要求设计的机械手为六个自由度,其中腰部有一个旋转自由度,大臂和小臂的俯仰自由度,小臂的旋转自由度,手腕的俯仰、旋转自由度。在本论文中,要求设计大小臂结构,所以,需要对实现大臂和小臂的俯仰自由度,小臂的旋转自由度的机构进行详细设计。机械手的特点是工作范围大,动作灵活,通用性强,结构较紧凑,能抓取靠近机座的物体。协作单位根据其用途和特点提出如下技术参数原始数据:(1) 每一次搬运啤酒11箱、每箱12瓶,搬运重量达150Kg。(2) 搬运动作的时间周期为:1012秒/次。(3) 码垛层数:5层。技术要求:(1) 所设计的搬运机器人本体结构能够满足一次搬运重量大、动作周期短、高效、快捷,以及通用性、灵活性等性能要求,同时满足结构工艺性、经济性等方面的要求。(2) 装配图、零件图的绘制应严格按照机械制图国家标准进行,尺寸、公差、形位公差、技术要求等标注应合理、规范。(3) 在机器人手臂末端便于实现与各种夹持器的配合联接。(4) 论文书写要求叙述清楚、符合规范,外文翻译正确。2.5 本章小结本章主要完成对机械手系统设计,通过多种方案的选择来确定最终要确定的方案. 确定了机械手的总体设计方案后,就要针对机械手的腰部、手臂、手腕、末端执行器等各个部分进行详细设计。3 机械手大臂结构设计3.1 大臂部结构设计的基本要求臂部部件是搬运机械手的主要部件。它的作用是支承手部,并带动它们做空间运动。臂部运动的目的:把手部送到空间运动范围内的任意一点。如果改变手部的姿态(方位)关节,则臂部自由度加以实现。因此,一般来说臂部设计基本要求: (1)臂部应承载能力大、刚度好、自重轻臂部通常即受弯曲(而且不仅是一个方向的弯曲),也受扭转,应选用弯和抗扭刚度较高的截面形状。很明显,在截面积和单位重量基本相同的情况下,钢管、工字钢和槽钢的惯性矩要比圆钢大得多。所以,搬运机械手常采用无缝钢管作为导向杆,用工字钢(如图4.1和4.2所示)或槽钢作为支撑钢,这样既提高了手臂的刚度,又大大减轻了手臂的自重,而且空心的内部还可以布置驱动装置、传动装置以及管道,这样就使结构紧凑、外形整齐。(2)臂部运动速度要高,惯性要小在一般情况下,手臂的要求匀速运动,但在手臂的启动和终止瞬间,运动是变化的,为了减少冲击,要求启动时间的加速度和终止前减速度不能太大,否则引起冲击和振动。 为减少转动惯量,应采取以下措施: (a) 减少手臂运动件的重量,采用铝合金等轻质高强度材料; (b) 减少手臂运动件的轮廓尺寸 (c) 减少回转半径 (d) 驱动系统中设有缓冲装置(3)手臂动作应灵活。为减少手臂运动件之间的摩擦阻力,尽可能用滚动摩擦代替滑动摩擦。(4)位置精度要高。一般来说,直角和圆柱坐标系搬运机械手位置精度高;关节式搬运机械手的位置最难控制,故精度差;在手臂上加设定位装置和检测机构,能较好的控制位置精度。本文采用铝合金材料设计成薄壁件,一方面保证机械臂的刚度,另一方面可减小机械臂的重量,减小基座关节电机的载荷,并且提高了机械臂的动态响应。砂型铸造铸件最小壁厚的设计。最小壁厚:每种铸造合金都有其适宜的壁厚,不同铸造合金所能浇注出铸件的“最小壁厚”也不相同,主要取决于合金的种类和铸件的大小,见表4.1所示:铸件尺寸 铸钢 灰铸铁 球墨铸铁 可锻铸铁 铝合金 铜合金 200200 200200500500 500500 58 1012 1520 35 410 1015 46 812 1220 35 68 33.5 46 35 68 表4.1 砂型铸造铸件最小壁厚计(mm)以上介绍的只是砂型铸造铸件结构设计的特点,在特种铸造方法中,应根据每种不同的铸造方法及其特点进行相应的铸件结构设计。本文机械臂壳体采用铸造铝合金。具体尺寸见总装配图。3.2 大臂部结构设计大臂壳体采用铸铝,方形结构,质量轻,强度大。3.3 大臂电机及减速器选型假设小臂及腕部绕第二关节轴的重量:M2=2Kg, M3=4KgJ2=M2L42+M3L52 =10.0972+40.1942=0.16kg.m2大臂速度为10r/min ,则旋转开始时的转矩可表示如下:式中:T - 旋转开始时转矩 N.mJ 转动惯量 kg.m2- 角加速度rad/s2使机械手大臂从到所需的时间为:则: (3.4)若考虑绕机械手手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为10N.m,取安全系数为2,则谐波减速器所需输出的最小转矩为: (3.5)选择谐波减速器:型号:XB3-50-120 (XB3型扁平式谐波减速器)额定输出转矩:20N.m 减速比:i1=120 设谐波减速器的的传递效率为:,步进电机应输出力矩为: (3.6)选择BF反应式步进电机型号:55BF003静转矩:0.686N.m步距角:1.53.4 减速器参数的计算刚轮、柔轮均为锻钢,小齿轮材料为45钢(调质),硬度为250HBS 刚轮材料为45钢(调质),硬度为220HBS。1.齿数的确定柔轮齿数:刚轮齿数: 已知模数:,则柔轮分度圆直径:钢轮分度圆直径:柔轮齿圈处的厚度:重载时,为了增大柔轮的刚性, 允许将1计算值增加20%,即柔轮筒体壁厚: 为了提高柔轮的刚度,取 轮齿宽度:轮毂凸缘长度:取柔轮筒体长度:轮齿过渡圆角半径:为了减少应力集中,以提高柔轮抗疲劳能力,取2.啮合参数的计算由于采用压力角的渐开线齿廓,传动的啮合参数可按考虑到构件柔度的计算公式,即按如下公式进行计算。考虑到轮齿扭矩,使轮齿间隙减小的值为: (扭转弹性模数G=80GPa)其中: W0m=0.89810-5Zr2Cnmaxm为了消除在的情况下进入啮合的齿顶干涉,则必须使最大侧隙大于由于齿轮扭转减小的侧隙后,还应保证存在有侧隙值。 其中: 径向变形系数:则: 径向变形系数:柔轮的变位系数: 刚轮的变位系数: 验算相对啮入深度: 如果计算得到的,为了继续进行计算,可取2。如果出现,为了传递动力,应适当增加值重新计算,使。柔轮齿根圆直径: 其中(齿顶高系数,径向间隙系数)柔轮齿顶圆直径: 其中(查表得)相对啮入深度和轮齿过渡曲线深度系数之和应符合两个不等式验算公式。即:刚轮齿顶圆直径: 刚轮齿根圆直径: 选取插齿刀齿数,插齿刀变位系数(中等磨损程度的插齿刀),插齿刀原始齿形压力角,则刚轮和插齿刀的制造啮合角:查渐开线函数表和三角函数表得则刚轮和插齿刀的制造中心距:插齿刀的齿顶圆直径:刚轮齿根圆直径:验算刚轮齿根圆和柔轮齿顶圆的径向间隙:即:可见沿波发生器长轴,在刚轮齿根圆与柔轮齿顶圆之间存在径向间隙。 3.凸轮波发生器及其薄壁轴承的计算滚珠直径: 柔轮齿圈处的内径:则:轴承外环厚度:由于工艺上的要求,可将外环做成无滚道的轴承内环厚度: 内环滚道深度:式中的是考虑到外环无滚道而内环滚道加深量。 轴承内外环宽度:所用为滚珠轴承,近似等于齿宽 轴承外环外径: 轴承内环内径:为了便于制造,采用双偏心凸轮波发生器。则凸轮圆弧半径:其中是偏心距:(刚轮分度圆直径,柔轮分度圆直径)则凸轮圆弧半径: 凸轮长半轴:凸轮短半轴:3.5承载能力的计算3.5.1 柔轮齿面的接触强度的计算根据谐波传动传动比大的特点,其柔轮和刚轮的齿数较多,齿形很接近于直线。故实际谐波齿轮传动的载荷能力主要应由柔轮齿侧工作表面的最大接触应力所限制。因此,谐波齿轮传动的柔轮齿侧面应满足如下接触强度条件:接触强度计算公式: 输出转矩柔轮节圆半径柔轮轮齿宽刚轮压力角接触系数(0.40.9)对于一般双波传动,轮齿宽许用接触应力 则: 所以满足齿面的接触强度要求。3.5.2 柔轮疲劳强度的计算柔轮材料采用 调制硬度229269。计算柔轮在反复弹性变形状态下工作时所产生的交变应力幅和平均应力为截面处正应力:切应力:由扭矩产生的剪切应力:其中: 则:验算安全系数:疲劳极限应力:应力安全系数:其中,抗拉屈服极限: 剪切应力集中系数:则满足疲劳强度条件。3.6 轴的计算校核画轴的受力分析图,轴的受力分析分析图如图所示:已知:作用在刚轮上的圆周力径向力法相力1) 求垂直面的支撑反力:2) 水平面的支撑反力: 3) F在支撑点产生的反力: 外力F作用方向与传动的布置有关,在具体位置尚未确定前,可按最不利的情况考虑,见(7)的计算4) 绘垂直面的弯矩图: 5) 绘水平面的弯矩图: 6) F产生的弯矩图: a-a截面F力产生的弯矩为: 7) 求合成弯矩图: 考虑最不利的情况,把与直接相加MA=+MAF= +41.1=70.1 N.mMA=+MAF= +41.1=62.57 N.m8) 求轴传递的转矩: N.mm9) 求危险截面的当量转矩 如图所示,a-a截面最危险,其当量转矩为:如认为轴的扭切应力是脉动循环应变力,取折合系数a=0.6,带入上式可得:10) 计算危险截面处轴的直径轴的材料选用45钢,调质处理,由表14-1查得B=650Mp,由表 14-3查得-1b=60Mpa,则:考虑到键槽对轴的消弱,将d值加大5%,故:d=22.8*1.05=24mm32mm满足条件因a-a处剖面左侧弯矩大,同时作用有转矩,且有键槽,故a-a左侧为危险截面其弯曲截面系数为:抗扭截面系数为:弯曲应力为:扭切应力为:按弯扭合成强度进行校核计算,对于单向转动的转轴,转矩按脉动循环处理,故取折合系数a=0.6则当量应力为:由表查得45钢调质处理抗拉强度极限=640Mpa,则由表查得轴的许用弯曲应力-1b=60Mpa,-1b,强度满足要求。3.7 大臂的平衡设计3.7.1 弹簧的受力分析当大臂带上弹簧时的受力情况如图4.1所示。 图4.1 带平衡弹簧时的大臂受力图分别为大臂、小臂、腕部和负载的重力,为弹簧因形变产生的拉力: (4.1)大臂质量kg;小臂质量kg; 腕部质量kg;负载质量kg。 可利用大臂旋转中心两侧的力矩平衡先求得弹簧需要提供的拉力。大臂初始状态时的位置情况如图4.2所示。图4.2 大臂垂直时的位置图由公式(4.1)有:大臂前俯角度为30时位置情况如图4.3所示。图4.3 大臂前俯30时位置图 由公式(4.1)有:大臂后仰10时的位置情况如图4.4所示。图4.4 大臂后仰10时的位置图由公式(4.1)有:以上为各不同位置时为保持大臂平衡弹簧所需提供的力矩。图解法计算不同位置时弹簧力的力臂如图4.5所示。图4.5 图解法计算各特征位置时的弹簧力力臂分别为弹簧在不同位置时的弹簧力对应的力矩半径; 分别为弹簧在不同位置时的弹簧装置长度。通过公式可求得不同位置时所需弹簧提供的拉力: NNN由于本课题中采用两根对称且平行的弹簧来平衡大臂,后面的弹簧计算是指其中一根弹簧的设计计算。 圆整为146N 圆整为452N 圆整为78N3.7.2 弹簧的设计计算弹簧是整体设计不可或缺的部分,以下为弹簧的设计计算步骤17。(1)现选用碳素弹簧钢丝(GB4357-89C级)第类弹簧。设钢丝直径d=4mm。取G=82000MPa,查表得MPa。MPa(2)确定钢丝直径 取旋绕比 曲度系数 丝杠直径计算公式: (4.2)其中弹簧的工作拉力,这里取N。各数据代入公式(4.3)得: mm取d=4mm。 弹簧中径: mm查表取D=25mm,K=1.24mm。 mm与原值相近。取d=4mm。此时D=25mm是标准值。 弹簧内径: mm 弹簧外径: mm(3)计算弹簧刚度 (4.3)式中: 弹簧的工作拉力,这里取N; 与对应的弹簧长度,mm; 与对应的弹簧长度,mm(见图4.5)。代入公式得: N/mm(4)计算弹簧圈数 (4.4) 代入各数据得: 圈 取n=95圈(6)弹簧初拉力 N (7) 极限工作应力 取 则MPa(8) 极限工作载荷 N(9)计算弹簧的变形 (4.5) 式中: 变形量; 与形变对应的拉力。将分别代入公式(4.5)得:mmmm(10)特性校核 基本满足要求。(11)计算其他结构参数 (4.6) (4.7)式中: 自由长度; 螺旋角; 弹簧节距,mm。代入数据得:自由长度: mm 弹簧变形后长度: mm mm根据以上计算,选定的有关参数为:材料为碳素弹簧钢丝,钢丝直径为4mm,旋绕比为6.25,弹簧中径25mm,弹簧右旋,螺旋角为,自由长度为434mm。为尽量使弹簧能满足不同平衡的平衡要求,在弹簧两端加上螺纹结构,安装时用螺母调节弹簧的长度以改变拉力大小,使大臂保持平稳。4机械手小臂结构设计4.1 腕部设计腕部能够连接机器人的臂部和手部,支撑并且改变手部的姿态。腕部设计的要求有:结构紧凑、质量轻;动作灵活、平稳,定位精度高;所用材料强度、刚度高;与臂部及手部的连接部位的结构合理,传感器和驱动装置的合理布局及安装等。按自由度分类可将工业机器人手腕分为单自由度手腕、二自由度手腕和三自由度手腕。并不是所有的手腕都必须具备三个自由度,而是根据工业机器人实际使用的工作性能要求来确定。本课题所研究设计的喷漆机器人手腕具有摆动和转动两个自由度。二自由度的手腕可以由一个R关节和一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能是重复的,实际上只起到单自由度的作用。本次设计要求腕部实现俯仰和偏转,即BB型手腕,如图3.1所示。由于现阶段国内步进电机产品研发生产技术的局限性,无法实现关节的直接驱动,所以为减轻整个小臂的自重,采取腕部步进电机后置远距离间接驱动,将其装在大臂的底部,固定在机身圆盘上,再通过两条链传动,一条链直接带动腕部的摆动,另一条链传动带轮带动锥齿轮轴通过一级锥齿轮的传递带动腕部的转动,虽然在腕摆时会产生手腕的附加转动,但是可以通过控制步进电机来控制干涉。图3.1 型手腕示意图 本课题研究设计的喷漆机器人广泛用于进行汽车车身等喷涂作业,腕部作用于工作空间的最前端,有时需伸入狭窄的空间进行作业,所以为了满足手腕部分结构紧凑、质量轻、动作灵活等要求将其外形和尺寸设计成如图3.2所示。图3.2 手腕外形尺寸示意图4.1.1 手腕偏转驱动计算手腕的偏转是通过后置于大臂底部一侧的步进电机驱动,两级带轮链条传动,再经过锥齿轮啮合传动改变方向来实现偏置的。手腕的驱动力来自步进电机,首先要计算手腕偏转所需要的转矩,再计算电机的输出转矩,确定步进电机的型号,从而计算设计链传动以及锥齿轮传动的传动参数及相关尺寸。(1)选择步进电机手腕偏转时,需要克服摩擦阻力矩、工件负载阻力矩和腕部启动时的惯性力矩。根据转矩的计算公式15: (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8)式中: 手腕偏转所需力矩(Nm);摩擦阻力矩(Nm);负载阻力矩(Nm);手腕偏转启动时惯性阻力矩(Nm);工件负载对手腕回转轴线的转动惯量(kgm2);手腕部分对回转轴线的转动惯量(kgm2);手腕偏转角速度(rad/s);手腕质量(kg);负载质量(kg);启动时间(s);手腕部分材料密度(kg/m3);手腕部分外径和内径(m);手腕的长度(m);手腕偏转末端的线速度(m/s)。根据已知条件:,m/s,m,m,m,s,手腕部分采用的材料假定为铸钢,密度kg/m3。将数据代入计算得: r/s kgm2 kgm2 Nm Nm Nm因为腕部传动是通过两级带轮和一级锥齿轮实现的,所以查取手册15得:弹性联轴器传动效率;滚子链传动效率;滚动轴承传动效率(一对);锥齿轮传动效率;计算得传动的装置的总效率。电机在工作中实际要求转矩 Nm (3.9)根据计算得出的手腕偏转所需力矩,结合北京和利时电机技术有限公司生产的90系列的五相混合型步进电机的技术数据和矩频特性曲线,如图3.3和图3.4所示,选择90BYG5200B-SAKRML-0301型号的步进电机。图3.3 90BYG步进电机技术数据图3.4 90BYG5200B-SAKRML-0301型步进电机矩频特性曲线(2)设计链传动(a) 计算、分配传动比根据步进电机型号及其对应的矩频特性曲线,所选步进电机工作转矩为4.5 Nm,对应的转速为r/min。由于腕部偏转的角速度r/s,已经通过计算得出,所以腕部末端偏转转速r/min,由此推出总的传动比。已确定的手腕偏转传动方式是通过两级带轮链条传动和一级锥齿轮传动,需将总传动比进行分配。综合考虑带轮的尺寸和手臂内部结构空间,取小臂链传动比,大臂链传动比,锥齿轮传动比,。(b) 计算小臂链传动功率 kW (3.10) (c)选择带轮的齿数为使小臂中的两个带轮结构更加紧凑,考虑到小臂链的传动比较小,而传动距离比较长,选择小带轮齿数,大带轮齿数,、取奇数,链节数为偶数,可使链条和带轮轮齿磨损均匀。(d)选择链条类型根据手册15进行链传动的设计计算: kW (3.11) kW (3.12) mm , (3.13) mm, (3.14) mm (3.15) mm (3.16) mm (3.17) mm (3.18) m/s (3.19) N (3.20) N (3.21)式中:工况系数; 主动带轮齿数系数; 单排链系数 ;中心距计算系数;设计功率(kW); 特定条件下单排链条传递功率(kW); 节距(mm); 初定中心距(mm); 链条节数; 链条长度(mm); 计算中心距(mm); 实际中心距(mm); 链条速度(m/s); 有效圆周力(N); 作用在轴上的力(水平或倾斜传动)(N)。 经过上述计算,选择链号10B,节距mm的链条。(e)计算带轮主要尺寸根据所选滚子链的型号规格确定一对带轮基本参数: ,mm,mm,mm。带轮主要尺寸: (3.22) (3.23) (3.24) (3.25) (3.26)式中:分度圆直径; 齿顶圆直径; 齿根圆直径; 分度圆弦齿高; 齿侧凸缘直径。 将数据代入计算得:mm mm mm mm mm mm mm mm mm(3)设计锥齿轮传动根据喷漆机器人的工作要求,将腕部最末端的传动设计成标准直齿圆锥齿轮传动,考虑到可能圆锥小齿轮齿根圆到键槽底部的距离,所以将圆锥小齿轮与轴设计成一体,圆锥大齿轮单独设计,材料选用45钢。由于选用的是闭式硬齿面齿轮,齿轮齿面磨损和弯曲疲劳折断是主要的失效形式,因此设计这类齿轮传动时按弯曲疲劳强度进行设计计算,宜选取较小的齿数,可取172015。(a)估算齿轮主要参数及尺寸齿数,:齿数比,所以选择,则。齿宽系数:,取。齿宽系数不宜取过大,避免引起小端齿顶过薄,齿根圆角半径过小,应力集中过大。根据手册16,按齿面接触疲劳强度计算小齿轮大端分度圆直径和大端模数: (3.27) 式中: 齿轮传递的扭矩; 工况系数;动载系数; 齿宽系数; 试验齿轮的接触疲劳极限应力;查手册16得到,,MPa。由于 Nm,,。将数据代入得到小齿轮大端分度圆直径mm。大端模数,根据标准分度圆模数,取。圆锥齿轮主要尺寸计算16: (3.28) (3.29) (3.30) (3.31) (3.32) (3.33) (3.34) 式中:大端分度圆直径; 、节锥角; 锥距; 中点分度圆直径; 当量齿数; 平均模数。 齿宽,取mm。将数据代入计算得:mm mm mm mm mm 根据大、小臂两级带轮的减速,锥齿轮传动中主动轮转速r/min。中点分度圆上的圆周力N。(b)按齿面接触疲劳强度进行校核计算接触用单位齿宽上的载荷 MPa (3.35) 查16手册,齿向载荷分布系数,=1.2。计算接触疲劳应力 MPa (3.36) 计算齿轮的接触疲劳极限应力 (3.37)式中: 寿命系数;润滑剂系数;齿面光洁度系数;速度系数;工作硬化系数;尺寸系数。查手册16得到,。所以,MPa。计算接触安全系数,安全系数较高。所以,接触疲劳强度满足,参数合理。(c)按齿根弯曲疲劳强度的校核计算弯曲用单位齿宽上的载荷MPa变位系数取,则。应力集中校正系数由及可查表得,由及可查表得。齿形系数由,据及可查表得,由及可查表得,而,所以:,。弯曲计算应力根据公式: (3.38) (3.39) 将数据代入计算得:MPa MPa取安全系数查16手册,得弯曲疲劳寿命系数,。查16手册,得弯曲疲劳极限为MPa,MPa。许用应力: (3.40) (3.41)将数据代入计算得:MPa MPa因此、,弯曲疲劳强度满足,参数合理17。4.1.2 手腕俯仰驱动计算手腕的俯仰是通过后置于大臂底部另一侧的步进电机驱动,两级带轮链条传动来实现的。与手腕偏转驱动的计算方法一样,先进行步进电机的选型,再确定链传动的传动参数和相关尺寸。经过设计计算,手腕俯仰驱动选择与手腕偏转驱动相同的步进电机型号90BYG5200B-SAKRML-0301。链传动参数与相关尺寸计算结果如下:带轮参数:,mm,mm,mm。带轮尺寸:mm mm mm mm mm mm mm mm mm4.1.3 电动机的选择设两臂及手腕绕各自重心轴的转动惯量分别为JG1、JG2、JG3,根据平行轴定理可得绕第一关节轴的转动惯量为: (3-1) 、分别为10kg(包括负载2kg)、5kg、12kg。、分别为重心到第一关节轴的距离,其值分别为185mm、800mm、1500mm,在式(3-1)中、故、可忽略不计。所以绕第一关节轴的转动惯量为: (3-2) = =同理可得小臂及腕部绕第二关节轴的转动惯量: = =式中:小臂重心距第二关节轴的水平距离 。 腕部重心距第二关节轴的水平距离 。则旋转开始时的转矩可表示如下 (3-3)式中:旋转开始的转矩 角加速度 使机器人主轴从到/s所需时间为:则: 若考虑绕机器人手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为 电动机的功率可按下式估算 (3-4)式中: 电动机功率 ; 负载力矩 ; 负载转速 ; 传动装置的效率,初步估算取0.9; 系数1.52.5为经验数据,取1.5估算后就可选取电机,使其额定功率满足下式 (3-5)选择QZD-08串励直流电动机表3-1 QZD-08串励直流电动机技术数据功率(W)额定电压(V)额定电流(A)额定转速(r/min)滤磁方式绝缘等级工作制(min)8002446.21750串励B604.2 小臂部结构设计小臂壳体采用铸铝,方形结构,质量轻,强度大。4.3 小臂电机及减速器选型本关节机器人小臂部两个自由度是平面旋转,若轴承是光滑的,则旋转所需的静转矩比较小。因为将臂伸开呈一条直线时转动惯量最大,所以在旋转开始时可产生步进电机的转矩不足。如图3-1所示,设两臂及手腕绕各自重心轴的转动惯量分别为JG1、JG2、JG3,根据平行轴定理可得绕第一关节轴的转动惯量为:J1=JG1+M1L12+JG2+M2L22+JG3+M3L32 (3.1)其中:M1,M2,M3分别为负载2Kg,手臂1Kg,腕部4Kg;L1,L2,L3分别其长度。JG1M1L12、JG2M2L22、JG3M3L32,故可忽略不计,以绕第一关节轴的转动惯量为:J1= M1L12+M2L22+M3L32 (3.2)=40.1432+10.4452+40.5422=1.46kg.m2同理可得小臂及腕部绕第二关节轴的转动惯量:M2=2Kg,L4=97mm;M3=4Kg,L5=194mm。J2=M2L42+M3L52 (3.3)=10.0972+40.1942=0.16kg.m2设小臂转速,角速度从0加到所需加速时间,则同步带应输出转矩为: (3.7) 若考虑绕机器人手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为10N.m,取安全系数为2,则谐波减速器所需输出的最小转矩为: (3.5)选择谐波减速器:型号:XB3-50-100额定输出转矩:20N.m 减速比:i1=100 设谐波减速器的的传递效率为:,步进电机应输出力矩为: (3.6)选择BF反应式步进电机型号:55BF003静转矩:0.686N.m步距角:1.54.3.1.传动结构形式的选择该减速器是电传动减速的谐波齿轮装置。要求其传动比较大结构简单紧凑效率较高承载力较高通用性良好。因此本设计方案所选的结构形式为刚轮固定波发生器主动和柔轮从动比较合适。为了便于采用标准刀具来加工柔轮和刚轮,特选取压力角的渐开线齿廓。 4.3.2.几何参数的计算齿数的确定柔轮齿数:刚轮齿数: 已知模数:,则柔轮分度圆直径:钢轮分度圆直径:柔轮齿圈处的厚度:重载时,为了增大柔轮的刚性, 允许将1计算值增加20%,即柔轮筒体壁厚: 为了提高柔轮的刚度,取 轮齿宽度:轮毂凸缘长度:取柔轮筒体长度:轮齿过渡圆角半径:为了减少应力集中,以提高柔轮抗疲劳能力,取由于采用压力角的渐开线齿廓,传动的啮合参数可按考虑到构件柔度的计算公式,即按如下公式进行计算。4.4 凸轮波发生器及其薄壁轴承的计算滚珠直径: 柔轮齿圈处的内径:则:轴承外环厚度:由于工艺上的要求,可将外环做成无滚道的轴承内环厚度: 内环滚道深度:式中的是考虑到外环无滚道而内环滚道加深量。 轴承内外环宽度:所用为滚珠轴承,近似等于齿宽 轴承外环外径: 轴承内环内径:为了便于制造,采用双偏心凸轮波发生器。则凸轮圆弧半径:其中是偏心距:(刚轮分度圆直径,柔轮分度圆直径)则凸轮圆弧半径: 凸轮长半轴:凸轮短半轴:4.4.1柔轮齿面的接触强度的计算根据谐波传动传动比大的特点,其柔轮和刚轮的齿数较多,齿形很接近于直线。故实际谐波齿轮传动的载荷能力主要应由柔轮齿侧工作表面的最大接触应力所限制。因此,谐波齿轮传动的柔轮齿侧面应满足如下接触强度条件:接触强度计算公式: 输出转矩柔轮节圆半径柔轮轮齿宽刚轮压力角接触系数(0.40.9)对于一般双波传动,轮齿宽许用接触应力 则: 所以满足齿面的接触强度要求。4.4.2柔轮疲劳强度的计算 谐波齿轮传动中轮齿的工作特点是:齿面的摩擦滑移接触和柔轮承受着反复的交变载荷。为了使柔轮在循环的弹性变形下能正常工作,除满足耐磨条件外,还必须进行柔轮的疲劳强度计算。柔轮材料采用 调制硬度229269。计算柔轮在反复弹性变形状态下工作时所产生的交变应力幅和平均应力为截面处正应力:切应力:由扭矩产生的剪切应力:其中: 则:验算安全系数:疲劳极限应力:应力安全系数:其中,抗拉屈服极限: 剪切应力集中系数:则满足疲劳强度条件。4.5 轴结构尺寸设计考虑到轴的载荷较大,材料选用45,热处理调质处理,取材料系数 所以,有该轴的最小轴径为: 考虑到键槽的影响,所以dmin取值为17MM,具体结构如下:4.6 轴的受力分析及计算轴的受力模型简化(见图7)及受力计算图 轴的受力分析知: 4.7 轴承的寿命校核鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.校核步骤及计算结果见下表:表1 轴承寿命校核步骤及计算结果计算步骤及内容计算结果6014A端B端由手册查出Cr、C0r及e、Y值Cr=98.5kNC0r=86.0kNe=0.68计算比值Fa/FrFaA /FrA e确定X、Y值XA=1 YA =0 查载荷系数fP1.2计算当量载荷P=Fp(XFr+YFa)PA=5796.24 PB=6759.14计算轴承寿命763399h大于12480h由计算结果可见轴承6014AC、6007均合格,最终选用轴承6014。四、轴的强度校核经分析知C、D两处为可能的危险截面, 现来校核这两处的强度:(1)、合成弯矩(2)、扭矩T图(3)、当量弯矩(4)、校核由手册查材料45的强度参数C截面当量弯曲应力:由计算结果可见C截面安全。各轴键、键槽的选择及其校核因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.一、 电机键的选择及校核:带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096联结处的材料分别为: 45钢(键) 、40Cr(轴) (1) 刚轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)此时, 键联结合格.(2)输出轴处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格.5 机械手机身结构设计机身系统部件的结构设计。(1) 支撑架的设计支撑架主要承载大小臂上所有零件的重量,左端设计大臂平衡弹簧的固定连接孔,右端设计大臂驱动电机支撑架。考虑机身回转时的偏心力,合理设计支撑架与回转轴的连接,采用柱销式连接,两边用螺钉紧固。同时设计一个支撑圆盘加以固定,使其转动更加平衡。为了减轻自重,选用ZL401材料。(2) 机座的设计机座在中间轴对应的位置处加工一个轴承固定座,其他无特殊要求。机身系统的内部设计主要是对传动系统的各部件进行设计计算与校核,其设计计算主要参照机械设计14。5.1 步进电机选择5.1.1 计算输出轴的转矩 (3.1) (3.2) (3.3) (3.4) (3.5) (3.6)惯性力矩 摩擦力矩 输出轴转动角速度 大臂转动惯量小臂转动惯量机身自身转动惯量启动时间=0.5s=0.8m/s=0.5m 1.6 rad/s 当大小臂的位置关系如图3.1所示位置时,大小臂处于动作可以达到的极限位置,此时需要的数值最大。图3.1 大小臂处于极限位置由同组成员计算出的大臂质量及相关大臂相对中心线oa的垂直距离得出: =400mm,=30kg,代入式(3.5)得:=1.6kgm由同组组员算出的小臂质量及相关小臂相对oa线的垂直距离得出:=1000mm,m=20kg,代入式(3.5)得:=6.67kgmm计算相关机械手机身结构设计数值得出:kg代入式(3.6)得:=5.75kgm代入(3.2)得到=44.86Nm 带入(3.1)得到=49.85Nm= =6.86Nm选择二级圆柱齿轮减速器i=9 (3.7)=0.99 联轴器传动效率=0.96 齿轮传动效率=0.98 轴承传动效率代入式(3.7)得到:0.8075.1.2 确定各轴传动比总传动比=9 ,根据推荐的传动副传动比合理范围,取:高速级传动比=3 ,低速级传动比=3 5.1.3 传动装置的运动和动力参数由图3.2,各轴由高速至低速依次设计为轴(输入轴)、轴(中间轴)、轴(输出轴)。图3.2 传动示意简图各轴转速 (3.8) (3.9) =1.6rad/s=15.3r/min代入式(3.8)、式(3.9)得:45.9r/min,137.7r/min转矩计算 (3.10)49.85Nm代入式(3.7)得:17.7Nm同理得到:=17.7Nm=6.27Nm=6.66Nm北京和利时电机电器有限公司的一些步进电机技术参如表3.1。表3.1 步进电机产品系列及技术参数型号相数步距角(DEG.)电压(V)电流(A)静转矩(N.m)空载运行频率(KHZ)转动惯量(Kg.cm2)备注86BYG250AN20.9/1.81103.62.4150.5686BYG250BN20.9/1.811045.0151.286BYG250CN20.9/1.811057.0154.28北京和利时电机电器有限公司86BYG250CN型步进电机的运行矩频特性曲线如图3.3。图3.3 运行矩频特性由计算得到所需:=6.86Nm,137.7r/min该电机可以满足要求。 北京和利时电机电器有限公司86BYG250CN型步进电机的外型简图如图3.4。图3.4 步进电机外形简图根据前面计算,选择北京和利时电机电器厂的86BYG250CN型步进电机。由电机输出轴尺寸选择TL2型弹性套柱销联轴器,主从动端均选用型轴孔16。5.2 齿轮设计与计算5.2.1 高速级齿轮设计与计算(1) 选定齿轮类型、精度等级、材料与齿数按已知条件,选用直齿圆柱齿轮传动。由资料14(下同)表10-1小齿轮材料选用45Cr(调质),表面硬度为280HBS,大齿轮材料选用45钢(调质),表面硬度为240HBS。选择7级精度,(2) 按齿面接触疲劳强度计算根据设计计算公式(10-9a)试算小齿轮分度圆直径,即: (3.11)载荷系数输入轴承受扭矩齿宽系数重合度系数弹性影响系数接触疲劳许用应力确定上式中各参数:试选载荷系数=1.3,小齿轮传递的扭矩为 =6.27Nm查表10-7,选齿宽系数=1;查表10-6,得弹性影响系数=189.8,查图10-21d,查得小齿轮接触疲劳强度极限为MPa;大齿轮接触疲劳强度极限为MPa。计算应力循环: (3.12)输入轴转速工作时间137.7r/min=10000h双向转动,取=2代入式(3.12)得: =1.65108次=4.96108次 查图10-19,得接触疲劳寿命系数1.15,1.26;计算接触疲劳许用应力:取安全系数S=1,则=690MPa, =693MPa计算设计公式中代入中较小值,得21.74mm计算小齿轮分度圆圆周速度0.17m/s计算齿宽b=21.74mm计算齿宽与齿高之比: b/h (3.13)模数0.91mm齿高=2.04mm代入式(3.13)得: =10.67计算载荷系数 (3.14)查图10-8,由v=0.17m/s,7级精度,得:=1.0查表10-4,得:1.2查表10-2,得:=1.25查表10-3,得:=1.30查图10-13,得:=1.28以上代入式(3.14)得: 1.95 按实际载荷系数修正 24.87mm (3.15)计算模数m:1.04mm按弯曲强度设计由公式(10-5 ) (3.16)弯曲疲劳寿命系数弯曲疲劳需用应力齿形系数应力校正系数由图10-20c查得小齿轮弯曲疲劳强度极限=500MPa;大齿轮弯曲强度极限=380MPa;由图10-18取弯曲疲劳寿命系数=0.93,=0.97计算载荷系数=1.92计算弯曲疲劳需用应力,取弯曲疲劳安全系数S=1.4,得:=332.1MPa=263.3MPa查取齿形系数,由表10-5得:=2.65;=2.226查取应力校正系数,由表10-5查得:=1.58;=1.764=0.013=0.015大齿轮对应数值大,将以上数值代入得:0.86对比计算结果,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度的承载能力仅与齿轮直径有关,所以取由弯曲疲劳强度算得的m=0.86,并取圆整为标准值m=1,前面计算得=24.87mm,得小齿轮的齿数:24.8725=75几何尺寸计算:分度圆直径 (3.17)将模数、齿数代入式(3.17)得:25mm;75mm中心距 (3.18)将,代入式(3.18)得: 50mm齿轮宽度 (3.19)由式(3.19)得:=25mm;=30mm5.2.2 低速级齿轮设计与计算(1) 选定齿轮类型、精度等级、材料与齿数(a) 按已知条件,选用直齿圆柱齿轮传动。 (b)由表10-1小齿轮的材料为40Cr(调质),硬度为280HBS,大齿轮的材料为45钢(调质),硬度为240HBS。(c)选择7级精度,(2)按齿面接触疲劳强度计算试选载荷系数:=1.3小齿轮传递的扭矩为:=17.7Nm查表10-7,选齿宽系数=1查表10-6,得弹性影响系数=189.8;查图10-21d,查得小齿轮接触疲劳强度极限为MPa;大齿轮接触疲劳强度极限为MPa。计算应力循环系数=5.5108次=1.84107次 查图10-19,得接触疲劳寿命系数1.26,1.31;计算接触疲劳许用应力:取安全系数S=1,则:=756MPa, =720.5MPa计算设计公式中代入中较小值,得:29.85mm计算小齿轮分度圆圆周速度0.072m/s计算齿宽b=29.85mm计算齿宽与齿高之比b/h模数1.24mm齿高=2.8mm =10.67计算载荷系数查图10-8,由v=0.07m/s,7级精度,得:=1.0查表10-4,得:1.2查表10-2,得:=1.25查表10-3,得:=1.30查图10-13,得:=1.28所以载荷系数1.95按实际载荷系数修正34.17mm计算模数m1.42mm按弯曲强度设计由式(10-5)得:由图10-20c查得小齿轮弯曲疲劳强度极限=500MPa;大齿轮弯曲强度极限=380MPa;由图10-18取弯曲疲劳寿命系数=0.93,=0.97计算弯曲疲劳需用应力取弯曲疲劳安全系数S=1.4,得:=332.1MPa=263.3MPa计算载荷系数=1.92查取齿形系数。由表10-5得:=2.65;=2.226查取应力校正系数由表10-5查得:=1.58;=1.764=0.013=0.015大齿轮对应数值大将以上数值代入得:0.86对比计算结果,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度的承载能力仅与齿轮直径有关,所以取由弯曲疲劳强度算得的m=1.21,并取圆整为标准值m=1.5,前面计算得=29.85mm,得小齿轮的齿数24.6725=75几何尺寸计算分度圆直径37.5mm;112.5mm中心距=75mm齿轮宽度=37.5mm;=42.5mm5.3 轴的设计与计算5.3.1 输入轴的设计与计算(1) 求输入轴上的功率、转速、扭矩0.456kW137.7r/min6.27Nm(2) 初估轴直径 (3.20)选取轴的材料为45钢,调质处理,查表11-3,取,并将数据代入式(3.20)得: =17mm (3) 轴的结构设计输入轴的最小直径与先前计算齿轮直径相差很少,所以做成齿轮轴。轴的结构尺寸如图3.5。图3.5 输入轴结构尺寸简图(4) 求轴上支反力与弯矩水平方向: ; (3.21)垂直方向: ; (3.22) 对锥齿轮: , (3.23) 对直齿轮: , (3.24) 将输入轴参数代入式(3.24)得:538.2N,138.5N501.6N,182.6N代入得:408.6N,867.2N 514.8N ,558.9N作出输入轴水平方向及垂直方向的弯矩图3.6: 图3.6 输入轴的受力分析图 从输入轴的结构图和受力情况分析得到截面II是输入轴的危险截面,计算结果如表3.4。表3.4 截面处的弯矩载荷水平面H垂直面V支反力408.6N867.2N514.8N558.9N弯矩44.8Nm 0.7Nm 总弯矩44.8Nm 扭矩6.27Nm10) 按弯扭合成应力校核轴的强度 (3.25)式中:轴的计算应力 轴受得弯矩 轴所受的扭矩 轴的抗弯截面系数 (3.26)校核轴上承受最大计算弯矩的截面处的强度,取1,将各数值代入式(3.25)、(3.26)得:7.66MPa轴的材料为45钢,查表11-1,。因此,故安全。5.3.2 中间轴的设计与计算(1) 求输入轴上的功率、转速、扭矩0.429kW45.9r/min17.7Nm(2) 初估轴直径选取轴的材料为45钢,调质处理,查表11-3,取,得:25mm(3) 轴的结构设计中间轴的直径与小齿轮分度圆直径相差很少,所以做成锥齿轮轴。轴的结构尺寸如图3.7。图3.7 中间轴结构尺寸简图(4) 求轴上支反力与弯矩水平方向: ; (3.27)垂直方向: ; (3.28) 对直齿轮:,将输入轴参数代入得:472N,171.8N944N,343.6N代入得:35.8N,436.2N13N,158.7N作出中间轴水平方向及垂直方向的弯矩图: 图3.8 中间轴的受力分析图 从轴的结构图和受力情况分析得到截面II是轴的危险截面,计算结果如表3.5。表3.5 截面处的弯矩载荷水平面H垂直面V支反力35.8N436.2N13N158.7N弯矩31.7Nm11.51Nm总弯矩33.7Nm扭矩17.7Nm(5) 按弯扭合成应力校核轴的强度校核轴上承受最大计算弯矩的截面处的强度2.01MPa轴的材料为45钢,查表11-1,60MPa。因此,故安全。5.3.3 输出轴的设计与计算 (1) 求输出轴上的功率、转速、扭矩0.404kW15.3r/min49.85Nm(2) 初估轴直径选取轴的材料为45钢,调质处理,查表11-3,取,得:33mm(3) 轴的结构设计轴的结构尺寸如图3.9,输出轴的直径与齿轮直径相差很少,所以做成锥齿轮轴。图3.9 输出轴结构尺寸简图(4) 求轴上支反力与弯矩水平方向: ; (3.29)垂直方向: ; (3.30) 对直齿轮:,将输入轴参数代入得:886.2N,322.6N代入得:1364.4N,478.1N 496.6N,174N作出输出轴水平方向及垂直方向的弯矩图3.10:图3.10 输出轴的受力分析图 从轴的结构图和受力情况分析得到轴的危险截面,计算结果如表3.7。表3.7 截面处的弯矩载荷水平面H垂直面V支反力1364.4N478.1N496.68N174N弯矩33.5Nm12.2Nm总弯矩35.7Nm扭矩49.85Nm(5) 按弯扭合成应力校核轴的强度校核轴上承受最大计算弯矩的截面处的强度35MPa轴的材料为45钢,查表11-1,60MPa。因此,故安全。5.4 轴承的校核5.4.1 输入轴上轴承寿命计算查阅资料14表13-3得到轴承的预期寿命为由图3.5可知轴上安装轴承处直径为17mm,考虑其承受齿轮轴和联轴器的重量,所以选择圆锥滚子轴承30203,e=0.35,=1.7, 1, Cr=20.8kN、Cor=21.8kN。求出各力即可算出强度。轴上所受的支反力: 657.2N 1031.5N (3.31) 193.3N, 303.2N (3.32)式中:径向支反力轴向支反力193.3N,303.2N193.3N,303.2N ,查表13-5得:0.4, ,查表13-5得:1,0查表13-6载荷系数=1.2,将以上代入式(3.33)、(3.34),轴承当量动载荷为 750.5N (3.33) 1237.8N (3.34)由公式(13-15) (3.35)式中:轴承所在轴的转速温度系数额定动载荷轴承所在轴的传动功率计算轴承寿命。 137.7r/min=25000N10/3查表13-7,温度系数=1代入式(3.35)得:h,满足使用要求。5.4.2 中间轴上轴承寿命计算(1) 由图3.7可知轴上安装轴承处直径为25mm,考虑其承受齿轮轴和联轴器的重量,所以选择圆锥滚子轴承3007105,e=0.37,=1.6, 0.9, Cr=32kN,Cor=37kN。求出各力即可算出强度。轴上所受的支反力:38.1N,464.2N11.9N,145.1N, 考虑其轴上零件重量得到,50 N;61.9N,145.1N;61.9N,=145.1N ,查表13-5得0.4,1.6 ,查表13-5得1,0查表13-6载荷系数=1.2,轴承当量动载荷为 137.1N557N计算轴承寿命。 45.9r/min C=28000N 10/3 查表13-7,温度系数=1代入得h,满足使用要求。5.4.3 输出轴上轴承寿命计算轴承受力如图3.11所示,轴安装出直径为35mm,由于轴向要承受大小臂的重力,所以选择圆锥滚子轴承2007907E,Cr=54.2kN,Cor=63.5kN,e=0.37,1.6,0.9,求出各力大小,即可算出强度。 图3.11 轴轴承受力结构简图图中R有两部分组成,第一部分为轴上所受的支反力:1452N, 508.8N第二部分为大臂和小臂工作时产生的偏心力,如图3.12所示。图3.12 工作时大、小臂质量产生偏心力简图 大小臂重力分别为:300N,200N经计算得:2400N3852N,2908.8N1203.8N,909N,1753.9N,909N1753.9N,=909N ,查表13-5得0.4,1.6 ,查表13-5得1,0查表13-6载荷系数=1.2,轴承当量动载荷为5108.2N2949.6N由公式13-10a,因为,所以带入进行校核计算轴承寿命。 15.3r/min =73200N10/3查表13-7,温度系数=1代入得h,满足使用要求。5.5 键的选择和校核5.5.1 键的选择根据齿轮和轴的参数,参考机械设计选择设计键。电机输出轴键:;中间轴的键:;输出轴的键:。5.5.2 键的校核键的材料为45钢,由资料表6-2查得许用挤压应力MPa 根据公式 (3.25)得到:键:工作长度mm,接触高度3.3mm,17.7Nm25.5MPa,安全。键:工作长度mm,接触高度3.8mm,49.85Nm23.9MPa,安全。5.6 机身结构的设计5.6.1 机身箱体材料的选择由于机身箱体不参与机器人动作,制造工艺要求不高,可选用灰口铸铁HT250制造。灰口铸铁凝固时收缩量小,抗震性好。以此制造箱体可以增强机身自身的稳定性,且较为经济。5.6.2 机身的结构设计及制造工艺由于整个箱体的结构尺寸由内部各零件配合情况决定,其形状较为复杂,故采用铸造的方法制造箱体,为了内部各零件的配合及方便安装,在顶部与右侧开盖。由于是卧式放置电机,考虑电机的质量,在左侧用托板托住电机。将电机的伸出轴用联轴器与锥齿轮轴连接,通过与输入轴的锥齿轮端啮合满足改变传动方向的要求。输入,中间,输出三根轴垂直放置并实现二级减速传动。由于齿轮悬置,需用圆螺母及止动垫圈定位与放松。底座出于稳定的考虑设计为圆形,可用沉头螺钉与行走机构连接。6 控制系统硬件设计6.1 控制系统模式的选择构建机器人平台的核心是建立机器人的控制系统。首先需要选择和硬件平台,控制系统硬件平台对于系统的开放性、实现方式和开发工作量有很大的影响。一般常用的控制系统硬件平台应满足:硬件系统基于标准总线机构,具有可伸缩性;硬件结构具有必要的实时计算能力;硬件系统模块化,便于添加或更改各种接口、传感器和特殊计算机等;低成本。到目前为止,一般机器人控制系统的硬件平台可以大致分为两类:基于VME总线(Versamodel Eurocard由Motorola公司1981年推出的第一代32位工业开放标准总线)的系统和基于PC总线的系统。近年来,随着PC机性能的快速发展,可靠性大为提高,价格却大幅度降低,以PC机为核心的控制系统已广泛被机器人控制领域所接受。基于PC机控制系统一般包括单PC控制模式,PC+PC的控制模式,PC+分布式控制器的控制模式,PC+DSP运动控制卡的控制模式,PC+数据采集卡的控制模式,由于基于采集卡的控制方式灵活,成本低廉,有利于本文设计中的废物利用,在程序和算法上可以自主编制各类算法,适合本课题研究的需要。因此本文选定PC+数据采集卡的控制方式。6.2 控制系统的搭建本控制系统包括工控机、数据采集卡、端子板、电源和伺服放大器等组成。图3.1为控制系统框图。图3.1 控制系统框图6.2.1 工控机在此选用研华工业控制机,主频233MHz,内存128兆,32位数据总线。底板有9个ISA插槽,4个PCI插槽,带VGA显示器。其性能价格比优越,兼容性好,有利于软硬件维护和升级。与普通个人计算机相比工业控制PC机有以下优点:芯片筛选要比一般个人计算机严格;芯片驱动能力较强;整机内部结构属于工业加强型,具有较强的防震和抗干扰性能;对环境(如温度、湿度、灰尘等)的要求要比一般计算机低得多。6.2.2 数据采集卡在本设计中我们主要用到研华公司的PCL812PG和PCL726,其参数如下。PCL-812PG主要特点: 16路单端12位模拟量输入 2路12位模拟量输出 采样速率可编程,最快达30KHz 带DMA或中断的A/D 16路数字量输出PCL-726主要特点: 6路独立D/A输出 12位分辨率双缓冲D/A转换器 16路数字量输入及16路数字量输出 多种电压范围:+/-10V,+/-5V,0- +5V,0- +10V和4-20mA电流环。6.2.3 伺服放大器在驱动系统设计过程中,主要是对伺服电机的驱动,本文中利用报废机器人上的maxon电机驱动关节,因此同样选用maxon伺服电机驱动器(maxon motor control4-Q-DC Servo Control LSC 30/2)进行驱动,如图3.2所示。图3.2伺服放大器接线及其调节示意这是专门针对maxon电机设计的伺服电机放大控制器,具有很强的控制功能和稳定性,电源电压1230v之间,1、2接线端子接伺服电机,直接给电机供电,3,4接线端与电源相连,7、8接控制电压,通过数据采集卡输出的模拟电压信号进入这两个接线端来控制电机的转速大小和正反转,13、14接测速计(本文中未用),3、4、10之间是一个光耦合器,输入“准备好”信号。在伺服控制器前面,有5个旋钮调节器涌来调节电机的五个参数,下边有10个DIP开关,用来选择控制器工作状态。6.2.4 端子板不同的被测信号通过不同的传送路线到采集卡,而采集卡在工控机机箱内,不变直接连接到工业系统中的各种传感器或执行器。端子板的主要作用有两个: 端子板是采集卡与每一个信号调理电路或驱动装置之间的电器连接部件,给每一路输入、输出信号提供单独的信号线和地线,使每一路通道可单独接通或断开,系统检修和排除故障时不必全部停止运行。 将每一路信号经过各自的传送路线到达端子板后,可以根据各路信号和传送路线的特点,在端子板上对各路信号进行简单的调理,如经电阻衰减、分流或经过RC低通滤波后进入采集卡。 图3.3端子板电路图3.3所示的电路图中,为防止直流电机产生的噪声影响电路的正常运行,使用了光电耦合器4N25。在机电一体化技术中,光电耦合电路是重要的接口电路。其中PCL-812PG通过五路数字量输出来控制电机电路的通断,PCL-726通过五路模拟量输出来控制电机的正反转和运行速度,另外PCL-812PG还负责采集五个电位器的电压,以此将电机的运行角度反馈给计算机。6.2.5 电位器电位器是一种可调电阻,也是电子电路中用途最广泛的元器件之一。它对外有三个引出端,其中两个为固定端,另一个是中心抽头。转动或调节电位器转动轴,其中心抽头与固定端之间的电阻将发生变化。本文采用的电位器是单圈的,也就是说各关节的运动角度小于360,对于该机器人已经足够了。电位器安装在机器人的各个关节输出轴上,所以在关节角的运动范围内,电位计的输出电压和关节角是一一对应的,存在着一定的函数关系。从理论上来讲,电位器应该是线性的测量元件,但由于电位器的滑动噪声以及滑线电阻的工作过程中的磨损,这种函数关系并非理想的线性关系,而是存在一定的偏移。电位器的标定就是根据在各个角度处测量的电压值,拟合出一条直线,近似替代真实的函数关系。6.2.6 电源电位器和伺服放大器都需要一定的电压,特别是电位计是在10.0v的条件下工作的,稳定的电压对于保证电位计反馈信号的真实性具有重大的影响;而伺服放大器是在12v30v范围内工作的,电压只要在此范围内即可。本文采用DH1715A-3型 双路稳压稳流电源,可以提供032v电压输出和02A电流输出。这里设定两路电压输出:14.0v-供给伺服放大器运行,10.0v-保证电位计的正常工作。7 控制系统软件设计以上完成了机器人的本体设计和控制系统硬件的搭建,下面将通过设计控制软件,使计算机通过数据采集卡有条不紊地向外部发送指挥信号,最终驱动机器人各个关节的运动,使之按照人的意愿“工作”。7.1 预期的功能(1)实时显示各个关节角,并且可以防止各个关节的运动角度超出预定的关节角范围内;(2)实现直流电机的伺服控制;(3)实现电机的自锁;(4)实现示教编程及在线修改程序;(5)可以设置参考点,使机器人在空间有一个固定的参考位置,可以回参考点。7.2 实现方法以模块化程序设计思想为指导,以预期要实现的功能作为各个模块,设计控制软件。 从图3.1可以看出,工控机通过数据采集控制。编程的任务其实就是用计算机控制数据采集卡使之发出或获取一系列数字量、模拟量。 研华公司的数据采集卡驱动程序中,附带许多与板卡相关的函数和数据结构以供使用,极大的方便了程序编写。 本文采用了Visual C+作为编程工具。7.2.1 实时显示各个关节角及运动范围控制在BOOL CRobotDlg:OnInitDialog()函数中,设置定时器Set Timer(1, gwScanTime, NULL),然后在void CRobotDlg:OnTimer(UINT nIDEvent)函数中,通过调用bool CRobotDlg:position_now(USHORT ka1_chan),采样电位器输出电压,通过前面的电位器标定函数,换算出各个关节的角度,并显示出来。在void CRobotDlg:OnChangeAngle?Edit()函数中(?表示1,2,3,4,5),将换算出的角度与该关节预设的运动范围作比较,看其是否在此区间内,否则弹出警告对话框,并且自动停止该关节的运动。7.2.2 直流电机的伺服控制对于大功率的直流电机,一般采用PWM控制来调节运行速度,这样可以提高电路及电机的运行效率,而本文中的电机功率并不是很大,为方便期间,采用了线性控制方法来调速。以关节1为例,与该模块相关的函数有OnZ1Button(), OnF1Button(), OnT1Button(),它们分别表示用来控制电机的正转、反转和停止,其中电机的运行速度靠输入的电压值调节;另外一个函数OnRun1Button()是用来实现电机的位置伺服控制,在预定的关节角范围内,电机可以运行到任何一输入的位置停止。7.2.3电机的自锁前面在讲到该机器人关节上未装制动器,所以必须通过软件程序实现关节的自锁,尤其是肩关节和肘关节的自锁。解决思路:大臂和小臂在电机运转时不会由于重力而掉落,在电机停止的时候却会下落,因为电机一旦停止,就失去了驱动力矩,因此若想让大臂和小臂停止在预定位置,应该在此位置给关节电机施加一个电压,让它担负起大臂或小臂,而不让其由于重力而下落。但是,在不同的位置,重力对大臂或小臂的力矩不同,应提供给电机的电压也不同,如何选取电机的电压呢?提供给电机的电压小了,不足以抵抗重力的力
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:重载搬运机器人本体结构设计【六自由度机械手】【10张CAD图纸】
链接地址:https://www.renrendoc.com/paper/115295099.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!