说明书.doc

果蔬大棚电动卷帘机设计【12张CAD图纸+PDF图】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共66页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:118713403    类型:共享资源    大小:2.78MB    格式:ZIP    上传时间:2021-03-24 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
大棚 电动 卷帘 设计 12 CAD 图纸 PDF
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
果蔬大棚电动卷帘机果蔬大棚电动卷帘机摘摘 要要果蔬大棚卷帘机是今后大棚种植必需的机械装备和发展方向,它改变了传统人工卷帘操作的方法,比人工操作提高效率十几倍以上,解决了每天卷放草帘的劳动强度,改善了严冬露天操作的环境,重要的是缩短了卷、放草帘所消耗的时间,延长了光照时间.大大提高了劳动效率和经济效益. 现今市场上主要供应的是一种是走动式卷帘机这种卷帘机利用卷帘机的动力上下自由卷放草帘子,不必受大棚坡度大小的限制。但这种卷帘机结构复杂,稳定性差,寿命低,且不适合长度过大的大棚。本课题所设计的是一种固定式卷帘机,它模拟人工操作,通过缠绕在绳上的绳子的拉紧和放松,实现草帘的卷收和铺放。其主要机构包括电动机、减速机、卷帘装置等。本课题着重对卷帘机的减速机及卷帘装置进行设计,使其在压低成本的前提下满足普通斜坡式大棚的要求。关键词:卷帘机,减速机,传动比,抗弯强度 FRUITS AND VEGETABLES BIG AWNING ELECTRICALLY OPERATED VOLUME CURTAIN MACHINEAbstract:The fruits and vegetables big awning volume curtain machine will be the next big awning planter essential machinery equipment and the development direction, it changed the traditional artificial volume curtain operation method, will enhance above efficiency several times compared to the manual control, solved the daily volume to graze animals the curtain the labor intensity, improved the severe winter open-air operation environment, more importantly reduced the volume, has grazed animals the time which the curtain consumed,Lengthened the illumination time.Enhanced the labor efficiency and the economic efficiency greatly. Nowadays in the market the main supply is one kind is takes a walk about the type volume curtain machine this kind of volume curtain machine use volume curtain machine power the free volume to graze animals the curtain screen, does not need to receive the big awning slope size the limit. But this kind of volume curtain machine structure is complex, the stability is bad, the life is low, also does not suit the length oversized big awning. What this topic designs is one kind of stationary volume curtain machine, it simulates the manual control,Through winding on rope string tautness and relaxation,The realization grass curtain volume receives and sets. Its main organization including electric motor, speed reducer, volume curtain installment and so on. This topic emphatically carries on the design to the volume curtain machine speed reducer and the volume curtain installment, causes it in to reduce the cost under the premise to satisfy the ordinary pitch type big awning the request.Key word Volume curtain machine,Speed reducer,Velocity ratio,Bending strength.第 I 页 共 II 页目 录1 绪论.11.1 本课题研究意义.11.2 本课题的研究现状.11.3 设计任务与要求.31.4 拟解决的关键问题.31.5 拟采用的研究手段.42 传动装置的总体设计.42.1 确定传动方案.42.2 电动机的选择.42.3 计算总传动比和分配各级传动比.52.4 计算传动装置的运动和动力参数.53 传动机构及零件的设计计算.63.1 带传动的设计计算.63.2 减速器的设计计算.73.2.1 蜗轮蜗杆的设计计算.73.2.2 蜗杆的设计.103.2.3 齿轮的设计计算.173.2.4 传动轴的设计.223.2.5 输出轴的设计.293.2.6 箱体的设计.363.3 卷动机构的设计.383.3.1 卷绳管的设计计算.383.3.2 绞盘的设计计算.413.3.3 滑动轴承的设计.433.3.4 法兰连接的设计.434 结论.46参考文献.47第 II 页 共 II 页致谢.49外文文献原文译文第 1 页 共 49 页1 1 绪论绪论1.11.1 本课题研究意义本课题研究意义随着城乡人民生活水平的提高,冬季栽培鲜菜、鲜果的温室大棚蓬勃发展,其规模越来越大。但是,在温室大棚作业中,卷铺草帘是最费时费工的主要作业环节之一,尤其在严寒冬季的凌晨和傍晚,在寒风刺骨的恶劣条件下,农民站在大棚顶上从事着艰苦笨重的草帘卷铺劳动,情况可想而知。对于一个长 80 米大棚来说,每天都要在早上拉启、傍晚放下,各要用大约 40 分钟左右。严格的来说,冬天里的阳光和温度是“果蔬大棚”中作物正常生长所依赖的珍贵资源。农民要争分夺秒,辛苦是可想而知的1。但这仍然解决不了问题, 由于“果蔬大棚”保温帘开启和关闭时间相对集中,引起的劳力不足和耗用时间过长,已经严重制约了“果蔬大棚”的产量效益和发展空间。电动卷帘机的出现则彻底解决了人工卷铺帘子带来的一系列不便。使用电动卷帘机,可随时启动,延长了光照时间,增加了光合作用,更重要的是节省劳动时间,减轻了劳动强度。日光温室在深冬生产过程中,每一千平方米温室人工控帘约需 1.5 小时,而卷帘机只需 5 分钟左右,太阳落山前,人工放帘需用约 1 小时左右,由此看来,每天若用卷帘机起放帘子,比人工节约近 2 小时的时间。同时延长了室内宝贵的光照时间,增加了光合作用时间 。另外,使用电动卷帘机对草帘、棉帘保护性好,延长了草帘、棉帘的使用寿命,既降低生产成本,同时因其整体起放,其抗风能力也大大增强。总体上可使农民能比较轻松地用更多的精力提高对蔬菜进行管理,提高品质、扩大规模2。因此,开发经济、实用的电动卷帘机是一项很好的研究课题。1.21.2 本课题的研究现状本课题的研究现状目前国内生产的卷帘机主要有两种工作方式3:一种是固定式,卷帘机固定在大棚后墙的砖垛上,它模拟人工操作,通过缠绕在轴上的绳子的拉紧和放松。利用机械动力把草帘子卷上去,利用大棚的坡度和草帘子的重量往下滚放草帘子。该种型号的卷帘机造价较高,大棚要有一定的坡度,如果棚面坡度太平,草帘子滚不下来,当风大时容易乱绳并影响工作,且安装复杂。另一种是走动式,这种卷帘机由悬臂杆、支撑杆、电机、减速机构和卷帘轴等组成。其工作方式是采用第 2 页 共 49 页机械手的原理,利用卷帘机的动力上下自由卷放草帘子,不必受大棚坡度大小的限制。但存在以下不足,悬臂杆和支撑杆稳定性差,对草帘整体弯度要求较高,不易满足长度较大的大棚,且其卷帘轴被焊接成整体构件,拆装不方便。对于较常见的 80 米长的果蔬大棚,通过文献检索,有一些满足要求的卷帘机械,现将代表性的结构特点分析如下。图 14是一种卷帘机的使用状态示意图,该卷帘机采用固定式结构,主要由工作电机及固定机构,减速机,卷绳管,卷帘绳,螺栓,轴承等组成。其工作原理为电机通过减速箱减速,使输出轴与卷绳管连接,带动卷绳管转动,卷绳管与卷帘绳一端固定,电机工作,卷绳管带动卷帘绳卷起,卷帘绳带动草帘卷起,完成卷的过程。电动反转,卷帘在自身重力作用下沿绳放下,完成放的过程。其中卷帘机的电机和减速机分别固定在一电机支杆上,电机支杆的下端固定在温室的墙上。大棚卷帘机包括多个卷绳管支承机构,卷绳管直接与减速箱的输出轴相连。卷绳管通过支架固定。支架通过螺栓固定在大棚的顶墙上。卷帘绳一端套在卷绳轴上,另一端绕过卷轴大棚顶端。其中电机通过减速机予以减速,带动整体。优点:结构简单,以电机驱动,卷帘卷起速度快,省工省力,适合大面积作业。图 1.1 一种卷帘机的使用状态示意图大棚顶端三角支架的结构图如图 2 所示,卷绳轴顶端支承机构的竖支杆的下端固定在横支板上,斜支杆的两端分别与竖支杆和横支杆连接,横支杆可固定在温室大棚的墙体上,如此三个支板形成三角形支承,大大加强了支板的支承能力和安全性。第 3 页 共 49 页图 1.2 卷绳轴顶端三角支架的结构图经过上述分析,为了适应农业上的需要,本课题要设计一种操作简单,经济实用的卷帘机。此款卷帘机结构要合理,维修要方便,能在北方恶劣的环境下长期工作。此款卷帘机依靠电力采用电机驱动。经过减速机降速,将扭矩传输给卷动机构。卷动通则带动草帘完成卷帘,放帘作业。卷帘机通过控制电机正反转,完成卷帘,放帘作业。其操作方式为固定式,可降低对大棚结构的要求,适应绝大多数农民的需要,具有广阔的市场。1.31.3 设计任务与要求设计任务与要求1)利用电机作动力,经减速机降速,通过控制电机正反转,完成卷帘、放帘作业。2)用于长度在 80 米以内的常用形状的温室大棚。3)需在 5 分钟内完成卷、放帘作业。结构合理、成本较低。4)电动机功率为 1.1KW,经减速机减速后降为 1.6e/min。1.41.4 拟解决的关键问题拟解决的关键问题1.电机与减速箱的固定及稳定性问题由于卷帘机要在露天的状态下作业,因此电机和减速机一定要固定好。经过分析可将电机和减速机分别固定在一个电机支杆上。电机支杆则固定在温室的后墙上。另外减速机的两端输出轴分别和一个与之相对应的卷绳管相连接。卷绳管可通过多哥支架固定。支架则固定在温室后墙的顶部。2.减速箱内部结构及配合根据课题需要采用的电动机功率为 1.1 千瓦,减速机降速后速度为1.6r/min。要在五分钟内完成作业。考虑到所需扭矩的大小,又要尽可能减小减第 4 页 共 49 页速机的尺寸和自重。所以本款卷帘机拟采用两级传动结构,第一级是蜗轮蜗杆传动结构,转速高、受力小、效率损毫小,第二级是齿轮传动结构。并且减速机有二个输出轴,二个输出轴分别和与二个输出轴相对应的卷绳管的一端连接。3.卷绳管与支架之间的嵌套支架上端固定有卷绳管支承环,支架与支承环之间可通过螺栓连接或焊接。另外支承环内嵌有轴承,卷绳管可嵌套在轴承内。通过螺栓可减少滚动摩擦。1.51.5 拟采用的研究手段拟采用的研究手段首先通过查找和收集资料,对设计有一个初步的了解,然后运用力学,机械原理,机械设计与数学等知识确定箱体的位置,计算出减速箱的传动关系。根据切削加工的知识及材料的力学性能确定卷绳管的长度直径及机构的材料构成。通过实际考察草帘的大小重量及尺寸,绳的长度及扭矩。用 CAD 制图,并分析图纸总结出现的情况和结果。第 5 页 共 49 页2 2 传动装置的总体设计传动装置的总体设计2.12.1 确定传动方案确定传动方案卷帘机是在户外作业根据课题需要采用的电动机功率为 1.1 千瓦,减速机降速后速度为 1.6 转/分。要在五分钟内完成作业。考虑到所需扭矩的大小,又要尽可能减小减速机的尺寸和自重。所以本款卷帘机拟采用两级传动结构,第一级是蜗轮蜗杆传动结构,转速高、受力小、效率损毫小.第二级是齿轮传动结构传动平稳,效率高.并且减速机有二个输出轴,二个输出轴分别和与二个输出轴相对应的卷绳管相连接,这样可以减小负载,增大转矩.卷帘机的传动方案见下图 2.1。图 2.1 卷帘机传动方案简图1电动机 2V 带轮 3减速机 4卷绳管2.22.2 电动机的选择电动机的选择卷帘机每天的工作时间是在早上和傍晚,且工作时间不到十分钟,工作时间相比较很短。因此不用考虑电动机的发热与升温。其负载是均匀增大的且转速稳定,故可忽略电动机的震动与变速。主要影响电动机寿命的因素是功率、转速及环境因素。应技术要求电动机的输出功率为 1.1KW,减速机降速后速度为 1.6r/min.因此尽量选择要具有较底转速的电动机.此外考虑到电动机式户外作业,它还要具有防雨,防尘等功能5。第 6 页 共 49 页综合考虑各种因素,所选择的电动机为一款齿轮减速电动机型号 YCJ71 配用电机 90SF1-4 输出功率 1.1KW,输出转速 240r/min,输出转矩 42N/m ,极数 4,电动机的安装型式为 B3 基本安装型5.2.32.3 计算总传动比和分配各级传动比计算总传动比和分配各级传动比传动装置的总传动比为 (2.1)1506.1240wmnni分配结果为第一级蜗轮蜗杆传动比为 30。第二级齿轮传动比为 5。2.42.4 计算传动装置的运动和动力参数计算传动装置的运动和动力参数1.各轴转速 (2.2)min/2401rnnw (2.3)min/830240112rinn (2.4)min/6 . 158223rinn2.各轴功率 依次为电动机与蜗杆,蜗杆与传动轴,传动轴与输出轴之间的传动效12,w 率。根据手册取5=0.97,=0.7,=0.99。,依次为蜗杆,传动w121P2P3P轴和输出轴上的输入功率=1.067KW (2.5)1PPw=1.0670.7=0.7469KW (2.6)2PPw1=0.74690.99=0.7394KW (2.7) 3PPw123.各轴转矩=9550000=9550000=43770 Nmm (2.8)1T11np1.0674240=9550000=9550000Nmm=919187Nm (2.9)2T22nP0.7469240/30第 7 页 共 49 页=9550000=9550000=4549978 Nmm (3.0)3T33np0.73941.63 3 传动机构及零件的设计计算传动机构及零件的设计计算3.13.1 带传动的设计计算带传动的设计计算已知电动机功率 1.1KW,转速 240r/min,传动比 i=11.确定计算功率caP查得工作情况系数 =1.0,故=1.1KWAKcaPAKP2.选取 V 带带型6根据,n 确定选取 SPZ 型。caP3.确定带轮基准直径查表取主动轮直径 mmda631则从动轮直径 =63mm12aaiddmm验算带得速度=0.79 (3.1)10006011ndvasm/sm/35带得速度合适4.确定 V 带的基准长度和传动中心距根据 (3.2)(2)(7 . 021021aaaaddadd初步确定中心距mma2000计算带所需要的基准长度=2 (3.3)1DLmmddaaa598)(22210圆整厚取带的基准长度mmLd630计算实际中心距 (3.4)mmLLaadd216210第 8 页 共 49 页5.计算 V 带的根数 (3.5)LcaKKPPPz)(00由 ,.得 min/2401rn mmda6311iKWP35. 0000P查表得 ,.则1aK82. 0LK=3.8 (3.6)LcaKKPPPz)(00取 Z=4 根6.计算预紧力0F (3.7)NqvKvzPFca261) 15 . 2(500207.计算作用在轴上的压轴力 (3.8)NZFFP20882sin210至此带轮的计算设计已经完成,其具体结构见零件图。3.23.2 减速器的设计计算减速器的设计计算3.2.1 蜗轮蜗杆的设计计算1.选择蜗杆传动根据 GB/T 10085-1988 的推荐,采用渐开线蜗杆(ZI).2.选择材料考虑到蜗杆传动传递的功率不大,速度只是中等,故蜗杆采用 45 钢;因希望效率高些,耐磨性好些,故蜗杆螺旋齿面要求淬火,硬度为 4555HRC。蜗轮用铸锡磷青铜 ZCuSn10P1,金属模铸造。为了节约贵重的有色金属降低成本,仅齿圈用青铜制造,而轮芯用灰铸铁 HT100 制造7。3.按齿面接触疲劳强度进行设计8根据闭式蜗杆传动的设计准则,先按齿面接触疲劳强度进行设计,再校核齿根弯曲疲劳强度。传动中心距第 9 页 共 49 页 (3.9)322)(HEZZKT1)确定作用在蜗轮上的转矩,根据式 2.9 得2T=919187Nmm2T2)确定载荷系数 K因工作载荷均匀增加,故取载荷分布不均系数=1.1,由手册选取使用系K数=1.15;由于转速不高,冲击不大,可取动载荷=1.05;则AKVK=1.11.051.151.32 (3.10)KKVKAK3)确定弹性影响系数EZ因选用的是铸锡磷青铜蜗轮和钢蜗杆相配,故=160MPaEZ2/14)确定接触系数Z先假设蜗杆分度圆直径和传动中心距的比值/=0.35,可查得=2.91d1dZ5)确定许用接触应力H根据蜗轮的材料为铸锡磷青铜,金属模制造,蜗杆螺旋齿面硬度45HRC,可查的蜗轮的基本许用应力=268MPaH应力循环次数=6015365=109500 (3.11)hLjnN260寿命系数=1.75 (3.12)87109500/10HNK则 =279MPa (3.13)HHNKH6)计算中心距mm=149.7mm (3.14)32)2799 . 2160(91918732. 1第 10 页 共 49 页取中心距=160mm,因 i=30,故查表取模数=8mm,蜗杆的分度圆直径=80mm.m1d这时/=0.5 则可查得接触系数=2.3,因为因此以上结果可用。1dZZZ4.蜗杆与蜗轮得主要参数与几何尺寸1)蜗杆轴向齿距=25.12mm;直径系数=10;齿顶圆直径=96mm;齿根圆直径aPq1ad=63.5mm;分度圆导程角=5 42,38。 。;蜗杆轴向齿厚=12.56mm.1fdas2)蜗轮蜗轮齿数=31;变位系数=-0.5002z2x验算传动比 i=31,这时得传动比误差为(30-29)/31=3.22%是允许的。12zz蜗轮分度圆直径 =248mm (3.15)2d2mz蜗轮喉圆直径 +2=248+28=264mm (3.16)2ad2d2ah蜗轮齿根圆直径 =248-214=220mm (3.17)2222ffhdd蜗轮咽喉母圆半径 =160-0.5264=28mm (3.18)2221agdar5)校核齿根弯曲疲劳强度 (3.19)53.12212FFaFYYmddKT当量齿数 (3.20)12.29)38425(cos31cos3322 ZZV则可查出齿型系数=2.72FaY螺旋角系数 =1-=1-=0.9643 (3.21)Y14014038425 许用弯曲应力 = (3.22)FFFNK查手册知铸锡磷青铜 ZCuSn10P1 制造的蜗轮的基本许用弯曲应力8F=56MPa第 11 页 共 49 页寿命系数 =1.27FNK9610950010=560.8316=46.57MPaF=30.45MPaF9643. 07 . 282488091918732. 153. 1弯曲强度是满足得。6)精度等级公差和表面粗糙度得确定9考虑到所设计得蜗杆传动是动力传动,属于通用机械减速器,从 GB/T 100891988 圆柱蜗杆、蜗轮精度中选择 8 级精度,侧隙种类为 f,标注为 8f GB/T 100891988。然后由手册查的要求得公差项目及表面粗糙度。详细数据见零件图。7)热平衡核算此机构每天得工作时间不超过十分钟,工作时间短。蜗轮蜗杆在工作中产生得热量少,对机构不产生影响。故不考虑热平衡计算。3.2.2 蜗杆的设计1.确定蜗杆上的功率转速和转矩1P1n1T根据已知=1.067KW,=240r/min,=43770 Nmm1P1n1T2.初步确定蜗杆的最小直径。选取蜗杆的材料为 45 钢,调制处理。查表取=112,于是0A (3.23)133min011.06711218.6240PdAmmmmn蜗杆的最小直径显然是与 V 带轮的联接处的直径,但如果环境允许的话,蜗杆可以直接与电机轴连接,这样就减少了 V 带轮,降低了成本。因此考虑的它的通用性,可适当增大蜗杆的直径来适应多种选择。蜗杆与电机轴直接连接时,蜗杆的最小直径显然时安装联轴器处的直径为了使所选的直径与联轴器得IIIdIIId孔径相适应,故需同时选取联轴器的型号。考虑到联轴器要与电机轴相联,因此联轴器的孔径为 28mm.计算联轴器的转矩10 (3.24)56901437703 . 11TKTACA第 12 页 共 49 页查手册选用 HL2 型弹性柱销联轴器,其公称转矩为 160000Nmm.故28mm,IIId半联轴器的长度62mm,半联轴器长度与蜗杆配合的长度=44mm。1L3.蜗杆的结构设计1)拟定蜗杆上零件的装配方案 如图所示图 3.1 蜗轮的结构与装配图2)根据蜗杆定位的要求确定蜗杆的各段直径和长度(1)为了满足半联轴器的轴向定位要求I-II 蜗杆段右端需制出一铀肩,故取 II-III 段的直径 34mm,左端用轴端挡圈定位按轴端直径取挡圈直径 D=35mm。半联轴器与蜗杆配合的毂孔长度 L1=44mm 以 mm,为了保证轴端挡圈只压在半联铀器上而不压在蜗杆的端面上,故 III 段的长度应比略短一些,现取=42mm1LIIIL(2)初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用,考虑到蜗杆左侧所受的载荷较大,故蜗杆左侧选用双列圆锥滚子轴承。参照工作要求并根据 =38mm,由轴承产品目录中初步选取 0 基本游隙组、标准精度级的双列圆锥IIIIVd滚子轴承 30208,尺寸为 dDT=40mm80mm19.75mm。右侧滚动轴承选择角接触轴承 7008AC,尺寸为 dDT=40mm68mm15mm(3)取挡油环的长度为 12mm,则=20+20+12=52mm,因为轴承左侧要用圆螺IV VL母定位,故的长度应略短于 52mm,取=51mm.同理=23mm。IV VLIV VLVIIIIXL第 13 页 共 49 页(4)取 =50mm.轴承端盖的总宽度为 15mm(由减速器及轴承端盖的V VIVII VIIILL结构设计而定)。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联铀器右端面间的距离 L=10mm,故取=24mm.至此,已经初步确定IIIIIL了轴的各段直径和长度。3)蜗杆上零件的周向定位半联轴器与蜗杆的周向定位均采用平键联接。半联轴器与蜗杆的联接,选用平健为 8mm7mm32mm,键槽用键槽铣刀加工,半联轴器与蜗杆的配合为 H7/k6。滚动轴承与蜗杆的周向定位是借过渡配合来保证的,此处选蜗杆的直径尺寸公差为m6。4)确定蜗杆上圆角和倒角尺寸取蜗杆端倒角为 245,各轴肩处的圆角半径见零件图。4.求蜗杆上的载荷11首先根据蜗杆的结构图作出蜗杆的计算简图。在确定轴承的支点位置时,从手册中查取 a 值.对于 30208 型圆锥滚子轴承,由手册中查得 a=15.3mm。因此,作为简支梁的蜗杆的支承跨距L2+L3=33.95+33.95=67.9mm.根据蜗杆的计算简图作出蜗杆的弯矩图和扭矩图第 14 页 共 49 页图 3.2 蜗轮的载荷分析图从蜗杆的结构图以及弯矩图和扭矩图中可以看出截面 C 是蜗杆的危险截面。现将计算出的截面 c 处的MH MV 以及 M 的值列于表 3.1。 表 3.1 蜗轮的扭矩和弯矩载荷水平面 H垂直面 V支反力 F=729.3N =364.61NHF2NHF=1024N =-42N1NVF2NVF弯矩 M=47243.4NmmHM=74826NmmVM总弯矩=88623NmmM扭矩 T =43770Nmm3T4.按弯扭合成应力校核蜗杆的强度进行校核时,通常只校核蜗杆上承受最大弯矩和扭矩的截面(即危险截面 c)第 15 页 共 49 页的强度。则由式及上表中的数值,并取=0.6 蜗杆的计算应力12 (3.25)MPaMPaWTMca7 . 8961 . 0)437706 . 0(88623)(3222321前已经选定蜗杆的材料为 45 钢、调质处理由手册查得=60MPa,因此1故安全。ca15.精确校核蜗杆的疲劳强度1)判断危险截面 截面 A,B 只受扭矩作用,虽然键槽、轴肩及过渡配合引起的应力集中均将削弱轴的疲劳强度,但由于蜗杆的最小直径是按扭转强度较为宽裕地确定的,所以 A,B 均无需校核。从应力集中对蜗杆的疲劳强度的影响来看,截面 IV 和 V 处过盈配合引起的应力集中最严重;从受载的情况来看。截面 C 上的应力最大:截面 IV 的应力集中的影响和截面 V 的相近但截面 V 不受扭矩作用,同时轴径也较大。故不必作强度校核.截面 C 上虽然应力最大,但应力集中不大(过盈配合及键槽引起的应人集中均在两端)。而且这里蜗杆的直径较大,放截面 C 也不必校核。因为键槽的应力集中系数比过盈配合的小,因而该轴只需校核截面 V 左右两端即可13.2)截面 V 右侧抗弯截面系数 W=0.1d3=0.1963=88473.6mm3 (3.26)抗扭截面系数 WT=0.2d3=0.2963=176947.2mm3 (3.27)截面 IV 左侧的弯矩 M 为 M=8862374498.7 Nmm (3.28)963 .1596截面 V 上的扭矩 T2 =43770 Nmm截面上的弯曲应力 =0.84MPa (3.29)b6 .884737 .74498WM截面上的扭转切应力 (3.30)MPaWTTT248. 02 .176947437702第 16 页 共 49 页蜗杆的材料为 45 钢,调质处理.由手册知.155,275,64011MPaMPaMPaB截面上由于轴肩而形成的理论应力集中系数及按手册查取,因r/d=2/55=0.036,D/d=60/55=1.09可查得 =2.0 =1.31又因蜗杆的材料的敏性系数为 82. 0q85. 0q有效应力集中系数为( -1)=1+0.82(2-1)=1.82 (3.31)1kq(-1)=1+0.85(1.31-1)=1.26 (3.32)1kq查手册知尺寸系数=0.67,扭转尺寸系数 =0.82蜗杆按磨削加工,则其表面系数为 =0.92蜗杆未经表面强化处理,即=1 ,则综合系数值为q (3.33)80. 211kK (3.34)62. 111kK碳钢的特性系数 =0.1,=0.05计算安全系数值得caS (3.35)1191maKS (3.36)2.611maKS=S=1.5 (3.37)caS8.5122SSSS故可知其安全.第 17 页 共 49 页3)截面 IV 左侧抗弯截面系数 W=0.1d3=0.1603=21600mm3抗扭截面系数 WT=0.2d3=0.2603=43200mm3弯矩 M 为 M=8862366467 Nmm603 .1560弯曲应力为 =3.07MPabb2160066467WM截面上的扭转切应力MPaWTTT01. 143200437702过盈配合处得值,用插入法求出,并取=0.8 于是得/k/k/k=3.16 =2.53/k/k轴按磨削加工 则其表面系数为 =0.92故得综合系数为25. 311kK62. 211kK计算安全系数值得caS75.211maKS6.511maKS=S=1.5caS85.1722SSSS故该轴在截面 V 左侧的强度也是足够的. 本题因无大的瞬时过载及严重的应力循环不对称性,故可略去静强度校核.至此,轴的设计计算即告结束.3.2.3 齿轮的设计计算第 18 页 共 49 页1.选定齿轮类型、精度等级、材料及齿数14.1)考虑到斜齿轮传动可以获得较小的传动几何尺寸,而且具有较大的承载能力。因此方案采用斜齿圆柱齿轮传动。2)减速机为一般工作机器,速度不高,故选用 7 级精度(GB10095-88)3)材料选择。由手册选择小齿轮材料为 40Cr(调质),硬度为 280HBS,大齿轮材料为 45 钢(调质)硬度为 240HBS,二者材料硬度差为 40HBS11。4)选小齿轮齿数为 Z1=20、大齿轮齿数 Z2=U Z1=520=1005)选取螺旋角。初选螺旋角=142按齿面接触强度设计由设汁计算公式计算即 (3.38)3211)(12HEHdttZZuuTKd1)确定公式内的各计算数值(1)试选载荷系数 1.6tK(2)计算小齿轮传递的转矩 =919187N2T(3)查表选取齿宽系数 1d(4)由表查得材料的弹性影响系数=189.8MPaEZ2/1(5)按齿面硬度查的小齿轮的接触疲劳强度极限=600MPa;大齿轮的接触1limH疲劳强度极限=550MPa。2limH(6)选取区域系数 =2.433 HZ(7)查得 =0.719 ,=0.865, =+=1.5841a2aa1a2a(8)计算应力循环次数N1 =60njL=6051365=109500N2 =1095005=21900 第 19 页 共 49 页(9)接触疲劳寿命系数 1 . 11HNK3 . 12HNK(10)计算接触疲劳许用应力取失效概率为 1% ,安全系数 S=1, (3.39)MPaSKHHNH6606001 . 11lim11 (3.40)MPaSKHHNH7155503 . 12lim22接触许用应力=(1+2)/2=(660+715)/2MPa =687.5MPaHHH2)计算(1)计算小齿轮分度圆直径由计算公式得td1 (3.41)td1mmmm6 .98)5 .6878 .189433. 2(56584. 119191876 . 1232(2)计算圆周速度 (3.42)smndvt/04. 010006056 .9810006011(3)计算齿宽 b 及模数ntm=198.6=98.6mm (3.43)bdtd1= (3.44)ntmmmZdt98. 324/97. 06 .98/cos11=2.25=2.253.98=8.955mm (3.45)hntmb/h=98.6/8.955=11.01 (3.46)(4)计算纵向重合度=0.318Z1tan=0.318120tan14=1.58 (3.47)d(5)计算载荷系数K已知使用系数=1 根据 v =0.04m/s 7 级精度,查的动载系数AK01. 1VK=1.01+0.18(1+0.62)2+0.230.001b=1.01+0.18(1+0.61)HKdd第 20 页 共 49 页+0.230.00198.6=1.3966 (3.48)查得 =1.35FK查得 =1.2 故载荷系数HaKFaK=11.011.21.3966=1.69 (3.49)KAKVKHaKHK(6)按实际的载荷系数校正所算得的分度圆直径=98.6=100.4mm (3.50)1d31/ttKKd36 . 1/69. 1(7)计算模数=4.87mm (3.51)nm20144 .100cos11COSZd3.按齿根弯曲强度设计 (3.52)32121cos2HSaFadnYYZYTKm1)确定计算参数(1)查得小齿轮的弯曲疲劳强度极限大齿轮的弯曲疲劳强度极MPaFE5001限 MPaFE3802(2)查得弯曲疲劳寿命系数 85. 01FNK88. 02FNK(3)计算弯曲疲劳许用应力取弯曲疲劳安全系数 S=1.41 =FMPaSKFEFN57.3034 . 150085. 0112 =FMPaSKFN86.2384 . 138088. 022(4)计算载荷系数=11.011.21.35=1.64KAKVKFaKFK(5)根据纵向重合度 =1.58,查得螺旋角影响系数第 21 页 共 49 页=0.88Y(6)计算当量齿数 (3.53)9 .2114cos20cos3311ZZV (3.54)5 .10914cos100cos33212ZZV(7)查取齿型系数得,72.21FaY18.22FaY(8)查取应力校正系数 57.11SaY79.12SaY(9)计算大小齿轮的并加以比较FSaFaYY (3.55)01406. 057.30357. 172. 2111FSaFaYY (3.56)01633. 086.23879. 118. 2222FSaFaYY大齿轮的数值大。2)设计计算 (3.57)mmmn00. 401633. 0584. 120194. 088. 091918764. 1232对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳nm强度计算的法面模数取=4.5,可满足弯曲强度。但为了同时满足接触疲劳强nm度需按接触疲劳强度算得的分度圆直径=100.4 来计算应有的齿数。于是由1d (3.58)6 .215 . 414cos4 .100cos11nmdZ取 Z1 =21,Z2 =u Z1=521=105第 22 页 共 49 页4.几何尺寸计算1)计算中心距 (3.59)mmmmmzzan26.292cos25 . 4)10521(cos2)(21将中心距圆整为 292mm2)按圆整后的中心距修正螺旋角 (3.60) 56481329225 . 4)10521(arccos2)(arccos21amzzn因 值改变不多,故参数,等不必修正。aHZK3)计算大、小齿轮的分度圆直径mmmzdn17.97cos5 . 421cos11mmmzdn4 .486cos224)计算齿轮宽度 (3.61)mmdbd17.9717.9711圆整后取 B2 =100mm B1 =105mm5)结构设汁以大齿轮为例。因齿轮齿顶圆直径大于 160 mm,而又小于 500mm,故以选用腹板式结构为宜。其它有关尺寸见零件图。3.2.4 传动轴的设计1.求传动轴上的功率转速和转矩2P2n2T取蜗轮的传动效率为0.7 则 =1.10.7=0.77KW2Pp=2nmin/8302401rin=9550000=9550000=919187 Nmm2T22np877. 0第 23 页 共 49 页2.求作用在蜗轮上的力NdTFFta24.10942112NdTFFat7.741222212NFFFtrr982tan212求作用在齿轮上的力NdTFt18952212NFFntr3.7111costanNFFta2.4725tan3.初步确定轴得最小直径选取蜗杆轴得材料为 45 钢,调制处理。查表取=112,于是0A轴得最小直径显然是安装轴承处的直径为了使所选得轴直径与轴承IIIdIIId的内径相适应,故需同时选取轴承的型号。因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承。参照工作要求、由轴承产品目录中初步选取 0 基本游隙组、标准精度级的单列圆锥滚子轴承 30211。尺寸为dDT=55mm100mm22.75mm,故=55mm。IIIV VIdd4.轴的结构设计1)拟定轴上零件的装配方案,如图mmmmnPAd3 .51877. 011233220min第 24 页 共 49 页图 3.3 传动轴的结构与装配2)确定轴的各段直径和才长度(1)取安装蜗轮处的轴的直径=60mm,蜗轮的左端与左轴承之间采用套筒IV Vd定位。已知蜗轮轮毂的宽度为 72mm,为了使套简端面可靠地压紧蜗轮,此轴段应略短于轮毂宽度,故取.蜗轮的右端采用轴肩定位,轴肩高度mmlIIIII70h0.07d取 h=6mm,故。轴环宽度 b1.4h,取。mmdIVIII66mmlIVIII10(2)取安装齿轮处的轴段的直径,齿轮的左端与左轴承之间采用60IIIIIdmm套筒定位,则齿轮轮毂的宽度为 65mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取=62mm。齿轮的左端采用轴肩定位。VIVl(3)取齿轮距箱体内壁之距离 s=15 考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s=8mm.已知滚动轴承宽度 T=22.75。mmasTllvivIII48216815.222至此,已初步确定了轴的各段直径和长度。3)轴上零件的周向定位齿轮、蜗轮与轴的周向定位均采用平键联接。按由手册查得平键截面IIIIIdbh=18mm11mm,键槽用键槽铣刀加工,长为 56mm 同时为了保证蜗轮与轴配合有良好的对中性,改选择蜗轮轮毂与轴的配合为 H7/n6;同样,齿轮与轴第 25 页 共 49 页的联接,选用平健为 18mm11mm56mm, 蜗轮轮毂与轴的配合为 H7/n6.滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为没 m6.4)确定轴上圆角和倒角尺寸取轴端倒角为 245,各轴肩处的圆角零件图。5.求轴上的载荷首先根据轴的结构图作出轴的计算简图。在确定轴承的支点位置时,从手册中查取 a 值.对于 30211 型圆锥滚子轴承,由手册中查得 a=21mm。因此,作为简支梁的轴的支承跨距L2+L3+L4=62+76+58=196mm.根据轴的计算简图作出轴的弯矩图和扭矩图第 26 页 共 49 页图 3.4 传动轴的载荷分析图从轴的结构图以及弯矩图和扭矩图中可以看出截面 c 是轴的危险截面。现将计算出的截面 c 处的MH MV 以及 M 的值列于下表 3.2 。6.按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 c)的强度。则由式及上表中的数值,并取=0.6 轴的计算应力第 27 页 共 49 页MPaMPaWTMca7 .48601 . 0)9191876 . 0(782623)(3222321前已经选定轴的材料为 45 钢、调质处理由手册查得=60MPa,因此1 故安全。ca1表 3.2 传动轴所受的扭矩与弯矩载荷水平面 H垂直面 V支反力 F=8352N =6169.91NHF2NHF=5629N =12341N1NVF2NVF弯矩 M=357802Nmm2HM=715778Nmm2VM总弯矩=782623Nmm2M扭矩 T =919187Nmm3T7.精确校核轴的疲劳强度1)判断危险截面 从应力集中对轴的疲劳强度的影响来看,截面 IV 和 V 处过盈配合引起的应力集中最严重;从受载的情况来看。截面 C 上的应力最大:截面 IV 的应力集中的影响和截面 V 的相近但截面 IV 不受扭矩作用,同时轴径也较大。故不必作强度校核.截面 C 上虽然应力最大,但应力集中不大(过盈配合及键槽引起的应人集中均在两端)。而且这里轴的直径较大,放截面 C 也不必校核。因为键槽的应力集中系数比过盈配合的小,因而该轴只需校核截面 V 左右两端即可.2)截面 V 左侧抗弯截面系数 W=0.1d3=0.1553=16637.5mm3抗扭截面系数 WT=0.2d3=0.2553=33275mm3截面 V 右侧的弯矩 M 为第 28 页 共 49 页M=782623340819 Nmm623562截面 V 上的扭矩 T2 =919187 Nmm截面上的弯曲应力 =20.48MPab5 .16637340819WM截面上的扭转切应力MPaWTTT6 .27332759191872轴的材料为 45 钢,调质处理.由手册知.155,275,64011MPaMPaMPaB截面上由于轴肩而形成的理论应力集中系数 及 按手册查取,因r/d=2/55=0.036,D/d=60/55=1.09可查得 =2.0,=1.31又因轴的材料的敏性系数为 82. 0q85. 0q有效应力集中系数为( -1)=1+0.82(2-1)=1.821kq(-1)=1+0.85(1.31-1)=1.261kq查手册知尺寸系数=0.67 扭转尺寸系数=0.82轴按磨削加工 则其表面系数为=0.92轴未经表面强化处理,即=1 ,则综合系数值为q80. 211kK62. 111kK碳钢的特性系数 =0.1, =0.05计算安全系数值得caS第 29 页 共 49 页79. 41maKS93.61maKS=S=1.5caS01.422SSSS故可知其安全.3)截面 V 右侧抗弯截面系数 W=0.1d3=0.1552=21600mm3抗扭截面系数 WT=0.2d3=0.2552=43200mm3弯矩 M 为 M=782623340819 Nmm623562弯曲应力为 =15.77MPab21600340819WM截面上的扭转切应力MPaWTTT2 .21432009191872过盈配合处得值 , 用插入法求出,并取=0.8 于是得/k/k/k=3.16 =2.53/k/k轴按磨削加工 则其表面系数为=0.92故得综合系数为25. 311kK62. 211kK计算安全系数值得caS39. 51maKS第 30 页 共 49 页81.21maKS=S=1.5caS5.222SSSS故该轴在截面 V 左侧的强度也是足够的. 本题因无大的瞬时过载及严重的应力循环不对称性,故可略去静强度校核.至此,轴的设计计算即告结束.3.2.5 输出轴的设计 1.求输出轴上的功率转速和转矩3P3n3T取蜗轮的传动效率为0.7, 齿轮的传动效率为0.99 12则根据已知 =0.7426KW3P又 =3nmin/6 . 15822rin=9550000=9550000=4549978 Nmm3T33np6 . 17623. 02.求作用在齿轮上的力NdTFt187084.48645499782223NFFntr7019costanNFFta4664tan3.初步确定轴得最小直径。选取轴得材料为 45 钢,调制处理。查表取=112,于是0A轴得最小直径显然是安装联轴器处的直径为了使所选得轴直径与IIIdIIId联轴器得孔径相适应,故需同时选取联轴器的型号。联轴器的计算转矩 考虑到转矩变化中等,故取 4TKTACA7 . 1AKmmmmnPAd4 .876 . 17624. 011233220min第 31 页 共 49 页最大负载转矩为 2274.989Nm4TNmm48.386725.2817 . 14TKTACA查手册选取 WK 型无键联轴器,其型号为 WK9090,公称转矩 16400Nmmed4.轴的结构设计1)拟定轴上零件的装配方案图 3.5 输出轴的结构与装配2)根据轴上定位的要求确定轴的各段直径和长度(1)为了满足半联轴器的轴向定位要求I-II 轴段右端需制出一铀肩,故取II-III 段的直径 96mm, 联轴器与轴的配合长度为 52mm.为了更好的安装,故取=90mm.IIIL(2)初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承。参照工作要求并根据 =96mm,由轴承产品目录中初步选取 0II IIId基本游隙组、标准精度级的单列圆锥滚子轴承 30220。尺寸为dDT=100mm180mm37mm,故=100mm.IIIIVd(3)取安装齿轮处的轴段的直径,齿轮的左端与左轴承之间采mmdVTV110用套筒定位,则齿轮轮毂的宽度为 100mm,为了使套筒端面可靠地压紧齿轮,此第 32 页 共 49 页轴段应略短于轮毂宽度,故取=98mm。齿轮的左端采用轴肩定位。轴肩高度VIVlh0.07d 取 h=8mm,故。轴环宽度 b1.4h,取。右端mmdIVIII118mmlIVIII12滚动轴承采用轴肩进行轴向定位。由手册上查得 30220 型轴承的定位轴肩高度h=6 因此取=106mm.L-=37mm.VI VIId(4)为了使输出轴与传动轴更好的配合取=80mm。VI VIIL轴承端盖的总宽度为 20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承舔加润滑脂的要求,取端盖的外端面与半联铀器左端面间的距离 L=20mm,故取=43mm.IIIIIVIIIIXLL至此,已经初步确定了轴的各段直径和长度3)轴上零件的周向定位半联轴器与轴的联接采用轴套连接,尺寸为 DL=180mm104mm,滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为 m6。齿轮与轴的周向定位均采用平键联接。选用平键为 20mm12mm90mm, 键槽用键槽铣刀加工,齿轮与与轴的配合为 H7/k6。4)确定轴上圆角和倒角尺寸。5.求轴上的载荷首先根据轴的结构图作出轴的计算简图。在确定轴承的支点位置时,从手册中查取 a 值.对于 30220 型圆锥滚子轴承,由手册中查得 a=36.4mm。因此,作为简支梁的轴的支承跨距L2+L3+L4=40+106+58=204mm.根据轴的计算简图作出轴的弯矩图和扭矩图。从轴的结构图以及弯矩图和扭矩图中可以看出截面 B 是轴的危险截面。现将计算出的截面 B 处的MH MV 以及 M 的值列于下表第 33 页 共 49 页 图 3.6 输出轴的载荷分析图表 3.2 输出轴所受的弯矩与扭矩载荷水平面 H垂直面 V支反力 F=6317N =12634N1NHF2NHF=-1436N =8547N1NVF2NVF弯矩 M= 1517160Nmm2HM= 863247Nmm2VM总弯矩= 1749285 Nmm2M扭矩 T = 4549978 Nmm3T第 34 页 共 49 页6.按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 B)的强度。则由式及上表中的数值,并取=0.6 轴的计算应力MPaMPaWTMca29.231101 . 0)45499786 . 0(1749285)(3222321前已经选定轴的材料为 45 钢、调质处理由手册查得=60MPa,因此11tkMM可见卷绳管的临界扭矩远大于其所受的负载扭矩,因此其稳定性是安全的3.3.1 绞盘的设计计算1.选择材料绞盘为固定在卷绳轴上的金属圆盘,卷帘绳一端固定在绞盘上,卷绳管转动时带动绞盘,绞盘带动卷帘绳完成作业。绞盘为普通机件,且户外作业转速低,故要求的精度不高,选择材料为灰铸铁 HT200 铸造。2.确定绞盘的直径d绞盘的转速为 1.6r/min,要在 2.5 分钟内完成 6m 长的工作量,其每转一转的缠绕绳子的长度为 (3.63)mntSL5 . 15 . 26 . 16则 ,0.47m=470.7mm (3.64)dL5 . 1Ld取 =480mm d为了固定卷帘绳,绞盘的两侧需制出一段台阶取台阶的高度为 10mm,绞盘的外侧直径 D=50mm。 3.绞盘的结构设计1)拟定绞盘的结构方案结合绞盘与卷绳管的配合,现选用图 3.8 所示的方案第 42 页 共 49 页2)根据定位要求确定其几何参数(1)因为卷绳管与绞盘利用卷绳管上的凸台来传递扭矩,所以为了满足卷绳管的周向定位要求,绞盘与卷绳管联接处需挖出一段键槽,根据已知键槽的截面,键槽利用铸造成型,长为 35mm,两个键槽对称分布。绞盘2015b hmmmm与卷绳管的轴向定位是利用螺栓联接来保证的,因为绞盘主要受径向扭矩的作用,在轴向基本上不受力,因此对轴向定位的要求条件不高,利用两个螺栓即可,螺栓的规格为 M1060(2)由于卷绳管上凸台的长为 30,故 BC 段宽度,为了保证卷30B CBmm帘绳能全部缠绕在绞盘上并留有一定的宽度,绞盘的总宽度 B=80mm.至此,已经初步确定了绞盘的形状尺寸。4.校核绞盘的强度按扭转校核绞盘的强度,根据公式 0 TW为单个绞盘所受的扭矩 =62.5N 0T0TTF rW 为抗扭截面模量 =0.02311m333()16DdW=2.5MPa4TW查手册知 =20MPa 则 可知绞盘的扭转强度是合理的。因为绞盘不受轴向力的作用,故略去强度校核。至此绞盘的设计即将结束。其具体机构设计见零件图。第 43 页 共 49 页3.3.3 滑动轴承的设计1.确定轴承的设计方案卷帘机要长年在户外作业,外界环境对滑动轴承的影响巨大,为了方便安装,维护以及更换滑动轴承。故选择无润滑的对开式径向滑动轴承。2.选择轴承宽径比 根据无润滑轴承的宽径比范围,取宽径比为 0.5。3.计算轴承宽度 45mm (3.68)(/ )BB dd4.计算轴颈圆周速度 (3.69)smdnv/00754. 0100060906 . 11000605.计算轴承工作压力 (3.70)MPadBFp138. 05 . 009. 062506.选择轴瓦材料 查手册在保证、的条件下,选定pp vv pvpv 轴承材料为适合无润滑的碳石墨。7.主要参数设计直径间隙 , 取轴瓦壁厚为。为了减小轴承mmd45. 0005. 0mmd910/的磨损率,轴瓦工作表面的粗糙度值尽量低些,取。mRa2 . 03 3.3.4 法兰连接的设计1.选取法兰的材料为 HT200,铸造成型。2.因为各个单元卷绳之间无轴向力作用,因此法兰只起传递转矩的左用。又因为法兰之间依靠螺栓连接,因此首先设计螺栓的连接。1)螺栓组结构设计取螺栓数 Z=4。对称布置。2)螺栓受力分析螺栓在静止时只受横向力的作用 NF62501螺栓在转动时只受转矩的作用根据公式求螺栓所受的工作剪力第 44 页 共 49 页取 r=75mm , 则 7583NZiirTrF122由于 故取进行计算,在横向剪力的作用下,接合面可能产生滑移,12FF 2F根据接合面不滑移的条件 (3.71)TKrfFSzii0查手册得接合面得摩擦系数=0.16,取防滑系数=1.2,则各螺栓所需要fSK的预紧力为56875NZIiSrfTKF03)确定螺栓直径选择螺栓材料为 Q235,性能等级为 4.6 的螺栓,查的材料屈服极限=240MPa,安全系数 S=1.5,故螺栓材料的许用应力=/S=160MPa。SS求的螺栓危险截面的直径为23.8mm (3.72)3 . 1421Fd为了增大安全系数,按粗牙普通螺纹标准,选取螺纹公称直径 d=24mm4)按挤压及剪切进行校核查手册得 =100MPa , =60MPap挤压强度条件为=25.4 (3.73)min0ldFPMPap (3.74)MPadF29.11420故螺栓满足要求5)确定法兰的几何参数第 45 页 共 49 页在已知螺栓直径的基础上取法兰的直径 D=184mm,厚度 B=30mm.因为法兰的材料强度与螺栓接近,而且材料用量远大于螺栓,因此法兰的强度校核可以省略,则法兰连接的设计已基本结束。至此,卷动机构的设计已经全部完成,其具体参数及配合关系可见零件图及装配图所示。第 46 页 共 49 页4 4 结论结论 在三个多月的设计过程中,查阅了大量的资料,请教了不少的老师和同学,并且对卷帘机在农业中的具体应用进行了实地的考察,进一步拉近了学校与社会的距离。四年才有一次的毕业设计,是对所学专业知识的一次大的综合运用,为我们将来步入社会参加工作打下了基础。通过设计,掌握了不少东西,进一步学学会了对知识的融会贯通,提高了自己分析,设计的能力。在设计的时间里,甚至觉得比自己在以前三年半的时间里所学的所有知识的总和还要多,毕业设计虽然是大学生离开学校,步入社会的最后一课,但是,蕴涵在这最后一课里的东西是巨大的,只要我们认真把握,认真对待了,我们一定会有很大的收获。由于能力有限,本设计中仍旧有许多不甚完善的地方,但经过这次设计,我的基础理论知识得到了很大的丰富和巩固, 设计能力得到了锻炼和提高,并熟练掌握了 AutoCA 等绘图软件,最重要的是锻炼了我的意志和完成较复杂任务的计划思维,使我懂得了如何在困难中继续前进,这些东西都会对我在以后的人生道路中继续前进有很大的帮助。第 47 页 共 49 页参参 考考 文文 献献1 张福墁.农业现代化与我国设施园艺工程J.农业工程学报,2002,18(增刊):1232 宝钢减速器图册编委会编.宝钢减速器图册.北京:机械工业出版社,199576.3 潘文维,罗庆熙,李 军.我国温室产业现状及发展建议J.北京园艺,2002,(3):4254 周长吉. 日光温室的结构优化J.农业工程学报,1996,12(增刊):272295 崔保苗,王占文,赵聪,慧张静.JL250 型日光温室卷帘机的设计研究.山西农业大学学报,2003,23(3):261-2646 李永春.温室大棚卷帘机.中国专利:00210621.3,2000-10-77 朴义浩.蔬菜大棚卷帘机.中国专利:97205153.8,1998-4-22.8 杜根锁.大棚卷帘机.中国专利:00258689.4,2001-8-229 黄彗春,沈永鹤.温室草帘自爬式卷帘机构的运动和受力分析.机械制造, 2004, 42(481): 353710 濮良贵,纪名刚.机械设计.北京:高等教育出版社,200123511 葛中民,机械设计基础.北京:高等教育出版社,1999.13212 孟兆范,张秀彬.电动双制式草帘卷放机的安装.农机使用与维修,2002, (3): 313 梁光启、林子为,工程材料学 , 上海科学技术出版社,198714 吴宗泽、罗圣国主编,机械设计课程设计手册,高等教育出版社,199215 机械工程手册编辑委员会编机械,机械工程程手册,第 16 卷机械工业出版社,198216 周明衡,常德功主编.机械传动基础部件 标准联轴器手册.沈阳:辽宁科技出版社,199517 王步瀛 机械零件强度计算的理论和方法.北京:高等教育出版社,1986第 48 页 共 49 页18 邱宣怀主编.机械设计.北京:高等教育出版社,199719 章日晋等编.机械零件的结构设计.北京:机械工业出版社,198720 齿轮手册委员会.齿轮手册.北京:高等教育出版社,199021 减速器实用技术手册编委会编.减速器实用技术手册.北京:机械工业出版社,199222 齿轮国家标准汇编.北京:中国标准出版社,199223 洛阳轴承研究所编.滚动轴承产品样品.198924 黄贵根,黄俞.镶嵌自润滑轴承的应用.润滑与密封,199625 卜炎编.螺纹联接设计与计算.北京:高等教育出版社,198726 Andrzej.M.Trzynadlowski 著.李鹤轩,李扬译.异步电动机.北京.机械工业出版社,200227 Jonathan Wickert 著. An introduction to mechanical engineerin . Xian Jiaotong University . 200328 M.F Spotts, T.E. Shoup . Design of machine elements. 机械工业出版社.200329 Devdas Shetty, Richard A. olk. Mechatronics system design . China Machine Press . 2004第 49 页 共 49 页致致 谢谢本文是在导师武文革老师的亲切关怀和悉心指导下完成的。我首先衷心地感谢我的导师武文革老师。感谢武老师对我在学习、选题、收集资料以及论文写作上的指导;感谢武老师在百忙之中抽出宝贵的时间阅读并修改本论文,并提出宝贵的意见。使我在本次设计中学到了许多新的知识。他严谨的治学态度和忘我的工作精神更是给我留下了深刻的印象,极大地开阔了我的视野,是我受益终身的财富。在此,衷心感谢我的导师这学期对我的关心和培养! 此外,本论文在编写的过程中参考了大量大师论著中的精华,均列于参考文献之中,在此谨向各位大师作者表示衷心的感谢。在这一学期学习过程中,也请教了不少其他的老师,得到了学校各位老师和许多同学的热心支持和帮助,也在此向他们致以真诚的谢意!中北大学 2006 届本科毕业设计说明书第 1 页 共 12 页外文文献原文外文文献原文Helical,Worm and Bevel GearsIn the force analysis of spur gars, the forces are assumed to act in a single plain. In this lesson we shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a righthand helix and the other a lefthand helix. The shape of the tooth is an involute helicoids. If a piece of paper cut in the shape of a parallclogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoids.The initial contact of spurgear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point,which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth.It is this gradual engagement of the teeth and the smooth transfer of load from one tooth to another ,which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear(herringbone)is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reaction and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossedhelical, or spiral, gears are those in which the shaft centerlines are neither 中北大学 2006 届本科毕业设计说明书第 2 页 共 12 页parallel nor intersecting. The teeth of crossed-helical gears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is no difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is, a right-hand driver goes with a right hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should he used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature, nature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears. Worn gearing are either single or double enveloping. A single enveloping gearing is one in which the gear wraps around or partially encloses the worm, A gearing in which each element partially encloses the other is, of course, a double enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 9O deg. shaft angle.中北大学 2006 届本科毕业设计说明书第 3 页 共 12 页When gears are to be used to transmit motion between intersecting shafts, some form of bevel gear is required. Although bevel gears are usually made for a shaft angle of 9O deg., they may be produced for almost any shaft angle. The teeth may be east, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of the teeth. Another difficulty, which occurs in predicting the stress in bevel gear teeth, is the fact that the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these eases it is often good design practice to go to he spiral bevel gear, which is the bevel counterpart of the helical gear, as in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gearsSAND CASTINGMost metal casting are made by pouring molten metal into a prepared cavity and allowing it to solidify. The process dates from antiquity. The largest bronze statue in existence to-day is the great Sun Buddha in Nara, Japan. Cast in the eighth century, it weighs 551 tons(500 metric tons) and is more than 71 ft (21m) high. Artisans of the Shang Dynasty in China ( 1766 - 1222B. C. ) created art works of bronze with delicate filigree as sophisticated as anything that is designed and produced today.There are many casting processes available today, mid selecting the best one to produced particular part depends on several basic factors, such as cost, size. production rate. finish, tolerance, section thickness, physical-mechanical properties, intricacy of design mach inability, and weld ability.中北大学 2006 届本科毕业设计说明书第 4 页 共 12 页Sand casting. the oldest and still the most widely used casting process. will be presented in more detail than the other processes since many of the concepts carry over into those processes as well.Green Sand Green sand generally consists of silica sand and additives coated by rubbing the sand grains together with clay uniformly wetted with water. More stable and refractory sands have been developed, such as fused silica, zircon, and mullets, which replace lower-cost silica and have only 2% linear expansion at ferrous metal temperatures. Also, relatively un-stable water and clay bonds are being replaced with synthetic resins, which are much mores table at elevated temperatures.Green sand molding is used to produce a wide variety of castings in sizes of less than around to as large as several tons. This versatile process is applicable to both ferrous and nonferrous materials.Green sand can be used to produce intricate molds since it provides for rapid collapsibility: that is, the mold is much less resistant to the contraction of the casting as it solidifies than are other molding processes. This results in less stress and strain in the casting.The sand is rammed or compacted around the pattern high a variety of methods, including hand or pneumatic-tool ramming, jolting (abrupt mechanical shaking), squeezing (com-pressing the top and bottom mold surfaces), and driving the sand into the mold at high velocities (sad slinging). Sand slings are usually resented for use in making very large casting where great volumes of sand are handled.For smaller casting, a two-part metal box or flask referred to as a cope and drag issued. First the pattern is positioned on a mold board. and the drag or lower half of the flask is positioned over it. Parting powder is sprinkled on the paten and the box is filled with sand. A jolt squeeze machine quicky compacts the sand. The flask is then turned over and again parting powder is dusted on it. The cope is then positioned on the top half of the flask and is filled with sand, and the two-part mold with the patter board sandwiched in between is squeezed.PatternsPatterns for sand casting have traditionally been made of wood or metal. However, it has been found that wood patterns change as much as 3% due to heat and moisture. This factor alone would put many casting out of acceptable tolerance for more exacting 中北大学 2006 届本科毕业设计说明书第 5 页 共 12 页specifications. Now, patterns are often made from epoxies and from cold-setting rubber with stabilizing inserts. Patterns of simple design, with one or more flat surface, can be molded in one piece, provided that they can be withdrawn without disturbing the compacted sand. Other patterns may be split into two or more parts to facilitate their removal from the sand when using two-part flasks. The pattern must be tapered to permit easy removal from the sand. The taper is referred to as draft. When a part does not have some natural draft, it must be added. A more recent innovation in patterns for sand casting has been to make them out of foamed polystyrene that is vaporized by the molten metal. This type of casting, known as the full-mold process, does not require pattern draft.Spruces, Runners, and Gates.Access to the mold cavity for entry of the molten metal is provided by sprees, runners, and gates, as shown in Fig. 7 I. A pouring basin can be carved in the sand at the top of the spree, or a pour box, which provides a large opening, may be laid over the spree to facilitate pouring. After the metal is poured, it cools most rapidly in the sand mold. Thus the outer surface forms a shell that permits the still molten metal near the center to flow toward it. As a result, the last portion of the casting to freeze will be deficient in metal and, in the absence oaf supplemental metal-feed source, will result in some form of shrinkage.2 This shrinkage may take the form of gross shrinkage (large cavities) or the more subtle micro shrinkage ( finely dispersed porosity). These porous spots can be avoided by the use of risers, as shown in Fig.7-1, which provide molten metal to make up for shrinkage losses.CoresCores are placed in molds wherever it is necessary to preserve the space it occupies in the mold as a void in the resulting castings. As sown in Fig.7-1, the core will be put in place after the pastern is removed. To ensure its proper location, the pattern has extensions known as core prints that leave cavities in the mold into which the core is seated. Sometimes the core may be molded integrally with the green sand and is then referred to as a green-sand core. Generally, the core is made of sand bonded with core oil, some organic bonding materials, and water. These materials are thoroughly blended and placed in a mold or core box. After forming, they are removed and baked at 350to 450F ( 177to 232C). Cores that consist of two or more parts are pasted together after baking.中北大学 2006 届本科毕业设计说明书第 6 页 共 12 页CO2 CoresCO2 cores are made by ramming up moist sand in a core box. Sodium silicate is used as a binder, which is quickly hardened by blowing CO2 gas over it. The C02 system has the advantage of making the cores immediately available.Pouring the MetalSeveral types of containers are used to move the molten metal from the furnace to the pouring area. Large castings of the floor-and-pit type are poured with a ladle that has a plug in the button, or, as it is called, a bottom-pouring ladle. It is also employed in mechanized operations where the molds are moved along a line and each is poured as it is momentarily stopped beneath the large bottom-pour ladle.ladles used for pouring ferrous metals are lined with a high alumina-content refractory. After long use and oxidation, it can be broken out and replaced. Ladles used in handling ferrous metals most be preheated with gas flames to approximately 2600 to 2700F ( 1427 to 1482C) before filling. Once the ladle is filled, it is used constantly until it has been emptied.For nonferrous metals, simple clay-graphite crucibles are used. While they are quite susceptible to breakage, they are very resistant to the metal and will hold up a long time under normal condition. They usually do not require preheating, although care must he taken to avoid moisture pickup. For this reason they are sometimes baked out to assure dryness.The pouring process must he carefully controlled, since the temperature of the melt greatly affects the degree of liquid contraction before solidification, the rate of solidification, which in turn affects the around of columnar growth present at the mold wall, the extent and nature of the dendrite growth, the degree of alloy burnout, and the feeding characteristics of the rise ring system.Finishing OperationsAfter the castings have solidified and cooled somewhat. they are placed on a shakeout table or grating on which the sand mold is broken up, leaving the casting free to be picked out. The casting is then taken to the finishing room where the gates and risers are removed. Small gates and risers may he broken off with a hammer if the material is bride. Larger ones requiem sawing, cutting with a roach, or shearing. Unwanted metal protrusions such as fins, bosses, and small portions of gates and risers need to be smoothed off to blend with the surface. Most of this work is done with a 中北大学 2006 届本科毕业设计说明书第 7 页 共 12 页heavy-duty grinder and the process is known as snagging or snag grinding. On large castings it is easier to move the grinder than the work, so swing-type grinders are used. Smaller castings are brought to stand or bench-type grinders. Hans and pneumatic chisels are also used to trim castings. A more recent method of removing excess metal from famous castings is with a carbon air torch. This consists of a carbon rod and high-amperage current with a stream of compressed air blowing at the base of it. This oxidizes and removes the metal as soon as it is molten, In many foundries this method has repl
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:果蔬大棚电动卷帘机设计【12张CAD图纸+PDF图】
链接地址:https://www.renrendoc.com/paper/118713403.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!