


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抽屉原理说课稿【教材分析】1教学内容:义务教育课程标准实验教科书六年级下册P70页例1及做一做。2教材地位及作用本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,协助学生加深理解,学会利用“抽屉问题”解决简单的实际问题。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提升学生的逻辑思维水平,为以后学习较严密的数学证明做准备。就课时划分来说,抽屉原理的例1和例2既能够用一课时完成,又能够分两课时完成,我之所以选择后者,是因为在抽屉原理中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而实行“平均分”的思路,以及把什么看做物体
2、,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。而且例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习抽屉原理(二),才能灵活使用这个原理解决各种实际问题。3本节课的教学目标根据数学课程标准和教材内容,我确定本节课学习目标如下: 知识性目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。 水平性目标:经历抽屉原理的探究过程,通过实践操作,发现、归纳、总结原理。 情感性目标:通过“抽屉原理”的灵活应用,提升学生解决数学问题的水平和兴趣,感受到数学的魅
3、力。4教学重、难点的确定教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。 教学难点:理解抽屉原理中“至少”的含义,并会用抽屉原理解决实际问题。【学情分析】(1)年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。(2)思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。所以教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。【教法、学法的选择】第一、教法上本节课主要采
4、用了设疑激趣法、讲授法、实践操作法。根据六年级学生的理解水平和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式实行启发式教学。第二、学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提升解决问题的水平,感受数学学习的乐趣。【教学程序设计】而在教学设计上,我本着“以学定教”的设计理念,把教学过程分四环节实行:设疑导入,激发兴趣自主操作,探究新知归纳小结,形成规律回归生活,灵活应用一、设疑导入,激发兴趣在导入部分,通过设计“在13同学中肯定至少有
5、2人的生日在同一个月份,你们相信吗?”的有趣猜测,拉近数学与生活的关系,激发学生的兴趣,引起探究的愿望,为今天的探究埋下伏笔。二、自主操作,探究新知根据学生学习的困难和认知规律,我们在探究部分设计了三个层次的数学活动。(一)实物操作,初步感知学生通过例1要求通过“把4枝铅笔放入3个盒子”的实际操作,解决3个问题:1怎样放?重点是让学生明确如果仅仅放入每个盒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的使用扫清障碍。2共有几种放法?这里主要是孕伏对“不管怎样放”的理解。3理解“总有一个”的意义。通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理
6、解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。(二)脱离具体操作,由形抽象到数通过“思考:把5枝铅笔放入4个盒子,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:1理解“至少”的含义,准确表述现象。(1)通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”。(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒” 时,总有一个文具盒里至少放入2枝铅笔的结论。2理解“平均分”的思路,知道为什么要“平均分”。抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法就是按照盒数平
7、均分,只有这样才能让最多的盒子里枝数尽可能少。3抽象概括,小结现象通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”等几个不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识抽屉原理。(三)学生自选问题探究首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。三、归纳小结,形成规律在
8、学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。四、回归生活,灵活应用研究的问题来源于生活,还要还原到生活中去。在教学的最后,请学生用这节课学的抽屉原理解释课始老师提出的生日问题,进行首尾的呼应;再让学生应用“抽屉原理”解决的几个生活中简单有趣的实际问题,用游戏的形式激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”, 让学生体会抽屉的形式是多种多样的。同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。【板书的设计】我的板书设计是在教学的过程中动态生成的,按讲课思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CI 509-2024房地产开发工程质量控制规范
- 专业c语言期末考试题及答案
- 上海保安考试题目及答案
- 电动汽车车辆维修合同3篇
- 突发公共卫生事件应对与管理
- 南通市崇川区2023-2024四年级数学下册期末试卷及答案
- 呼吸管理运营体系构建
- 幼儿园卫生保健家长座谈会
- 建筑工程施工总承包合同范文4篇
- T/ZJFIA 011-2023常山双柚汁复合果汁饮料
- 店面出让股权协议书
- 深圳2025年深圳市住房公积金管理中心员额人员招聘8人笔试历年参考题库附带答案详解
- 英文电影鉴赏知到智慧树期末考试答案题库2025年北华大学
- 中外航海文化知到课后答案智慧树章节测试答案2025年春中国人民解放军海军大连舰艇学院
- 心肺复苏术课件2024新版
- 复调音乐巡礼-巴赫勃兰登堡协奏曲 课件-2023-2024学年高中音乐人音版(2019)必修音乐鉴赏
- 健康与免疫智慧树知到答案章节测试2023年浙江中医药大学
- 水墨中国风名著《水浒传》简介主题PPT模板课件
- Q∕GDW 11958-2020 国家电网有限公司应急预案编制规范
- TCSCS 009-2020 钢结构滑移施工技术标准
- 小学英语GreedyRabbit教案
评论
0/150
提交评论