顶盖底座.PDF

DZ型单体液压支柱设计【10张PDF图纸+CAD制图+文档】

收藏

压缩包内文档预览:
预览图
编号:122393539    类型:共享资源    大小:1.85MB    格式:ZIP    上传时间:2021-04-19 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
DZ 单体 液压 支柱 设计 10 PDF 图纸 CAD 制图 文档
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可预览。。。下载后都有,,请放心下载,,文件全都包含在内,,【下载后加 QQ:1064457796或1304139763,免费领CAD格式图纸】 ================================================= 喜欢这套资料就充值下载吧。。。资源目录里展示的都可预览。。。下载后都有,,请放心下载,,文件全都包含在内,,【下载后加 QQ:1064457796或1304139763,免费领CAD格式图纸】

内容简介:
河南理工大学万方科技学院本科毕业设计(论文)中期检查表指导教师: 李延锋 职称: 教授 所在院(系): 机械与动力工程学院 教研室(研究室): 机械与动力工程部 题 目 单体液压支柱学生姓名牛 翔专业班级08机设三班 学号0828070142一、选题质量:(主要从以下四个方面填写:1、选题是否符合专业培养目标,能否体现综合训练要求;2、题目难易程度;3、题目工作量;4、题目与生产、科研、经济、社会、文化及实验室建设等实际的结合程度)1、本题目符合机械设计专业的培养目标,能够充分锻炼和培养分析问题和实际操作能力,能够体现综合训练的要求;2、本题目难易适中,符合本科毕业设计要求;3、本题目工作量适中,能在规定的时间内完成; 4、所选题目单体液压支柱的设计与实际贴合比较紧密,在实际的应用中比较广泛。在设计过程中,对机器的零件的设计和计算对我来说是以往所学知识的总结和应用,所以能够满足综合训练的要求二、开题报告完成情况:根据自己在各方面资料的收集和整理,通过对可行性的分析,结合实际因素,我完成了这次设计的选题。在选题结束之后,通过自己认真查阅相关的资料,最后结合本身的实际情况和设计的时间任务完成了开题报告。三、阶段性成果:1、通过对单体液压支柱的了解,再加上有关书籍的介绍,算是对单体液压支柱有了一个大概的了解。前期阶段主要是对有关于单体液压支柱的各方面的文献和资料进行搜集,为设计以后的设计做了必要的准备。 2、中期阶段主要是依据参考资料,从上面找到一些关于关于单体液压支柱的信息,首先对其零部件有了大致的了解,其次是已有了大概的设计方法,并开始了一些基本的结构设计。3、正在进行装配图的CAD画图和设计说明书。四、存在主要问题:由于这是我第一次单独进行单体液压支柱总体设计,所以刚开始进展的并不是很顺利。而我对这方面的知识掌握比较少,所以需要在图书馆和网上查找更多的相关资料,对有关起重机的知识进行更深入的了解。不过我坚信,只要自己努力和在指导老师的指引下,我能把各方面的问题逐个击破,最终顺利完成毕业设计。五、指导教师对学生在毕业实习中,劳动、学习纪律及毕业设计(论文)进展等方面的评语指导教师: (签名) 年 月 日2 Hydraulic System There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include: 1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power output at the point required.4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics. The secret of hydraulic systems success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include: Pumps which convert available power from the prime mover to hydraulic power at the actuator.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.Actuators which convert hydraulic power to usable mechanical power output at the point required.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics. The secret of hydraulic systems success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.液压系统 仅有以下三种基本方法传递动力:电气,机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系。为了合理的确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济的传递动力。然而液压系统与电气系统相比,传递动力的距离较短。液压动力传递系统涉及电动机,调节装置和压力和流量控制,总的来说,该系统包括:泵:将原动机的能量转换成作用在执行部件上所谓液压能。阀:控制泵产生流体的运动方向,产生的功率的大小,以及到达执行部件液体的流量。功率大小取决与对流量和压力大小的控制。执行部件:将液压能转换成可用的机械能。 介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。联结件:联结各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。液压系统在工业中应用广泛,例如冲压,钢类工件的磨削及一般加工业,农业,矿业,航天技术,深海勘探,运输,海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中很少有人不从液压技术中得到某种益处。液压系统成功而又广泛使用的秘密在于它的通用性和易作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作,加工过程和材料处理等。液压动力之所以成为自动化的重要组成分,是因为它有如下主要的四种优点:1. 控制方便精确 通过操作一个简单的操作杆和按钮,液压系统的操作者便能立即启动,停止,加减速和能提供任意功率,位置精度为万分之一英寸的位置控制力。2. 增力 一个液压系统(没有使用笨重的齿轮,滑轮和杠杆)能简单有效地将不到一盎司的力放大产生几百吨力的输出。3. 恒力和恒扭矩 只有液压系统能提供不随速度变化的恒力或恒扭矩,它可以驱动对象从每小时移动几英寸到每分钟几百英寸,从每小时几百转到每分钟几千转。4. 简单,安全,经济 总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简单。这使的系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置已淘汰其他类型的转向动力装置,该转向部件中包含有人力操作方向控制阀和分配器。因为转向部件是全液压的,没有万向节,轴承,减速齿轮等机械连接,这使得系统简单紧凑。另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力,这对于因操作空间限制而需要方向盘的场合很重要,这也是减轻司机疲劳度所必需的。液压系统的其他优点包括双向运动,过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。尽管液压系统具有如此高性能,但它不是可以解决所有动力传递问题的灵丹妙药。液压系统也有些缺点,液压油有污染,并且泄露不可能完全避免,另外如果油液渗漏发生在灼热设备附近,大多数液压油能引起火灾。气压系统气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其它的气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统部件中产生电弧有可能点燃泄露物的的场合下(使用空气作为介质)尤其安全。在气压系统中,压缩机用来压缩并供应所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座便可获得电能。用这种方法,压力气体可以从气源输送到整个工厂的各个角落,压力气体可通过空气气滤器除去污物,这些污物可能会损坏气动组件的精密配合部件如阀和气缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一回路使用。因为空气不是好的润滑剂(包括20%的氧气),气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压的空气中,这有助于减少气动组件精密配合运动件的磨损。 由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有害的水分。由于气压系统直接 向大气排气,会产生过大噪音,因此可在气阀和执行组件排气口安装消声器来降低噪音,以防止操作人员因接触噪声及高速空气粒子有可能引发的危害。用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,液压系统中,当执行组件加速和减速和阀突然开启关闭时,油液的质量便是一个潜在的问题,根据牛顿运动定律(力等于质量乘以加速度),产生加速运动油液所需的力要比加速同等体积空气的力高出许多倍4。液体比气体具有更大的粘性,这会因为内摩擦而引起更大的压力 和功率损失:另外,由于液压系统使用的液体要与大气隔绝,故他们需要特殊的油箱和无泄露系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(地于250psi),而液压力可达1000psi之高,因此液压系统可以是大功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、提升、冲孔、夹紧、组装、镏接、材料处理和逻辑控制操作等。10河南理工大学万方科技学院本科毕业设计(论文)开题报告题目名称DZ型单体液压支柱学生姓名王波专业班级机械设计3班学号08280700142一、 选题的目的和意义: 随着我国煤炭事业的不断发展,单体液压支柱也越来越多地广泛用于生产,它与一般的金属支柱相比回收率高,支护安全可靠性好,工作阻力恒定,初撑力高,不受井下过多条件的影响,顶板的下沉量小容易保护顶板完整,容易实现稳定高产等优点。对于我国煤炭事业向普通机械化生产方向发展,并向综合机械化生产过度都十分有利,它与液压支架相比,能大量节省钢材,并且适用范围广泛,但单体液压支柱成本高,加工复杂,需要人工搬动所以设计时要求再能满足强度要求的情况下尽可能的减轻重量,总的看来,广泛研究新型液压支柱对目前发展煤炭事业有着极其重要的意义。 本设计目的在于进一步简化支柱结构,提高加工质量及支柱强度,降低成本。二、 国内外研究综述:目前我国单体液压支柱分类及发展状况 单体液压支柱单体液压支柱由油缸、活柱、阀等零部件组成,以专用油或高含 水液压液(含乳化液)等为工作液,供矿山支护用的单根支柱。属于 恒阻式支柱,具有不变的额定工作阻力,它和金属铰接顶梁配合使 用,主要使用在煤矿回采工总面顶板支护、煤矿综采工作面端头支护 和回采工总面巷道的前支护临时支护,可用于煤层倾角在 35以下的 任何采煤工作面,支柱支护密度根据地质状况和采煤方式而定。由于 煤层自身的赋存条件(如近水平煤层、斜煤层、急斜煤层、直倒立转 煤层、 “鸡窝”煤层等)和煤层赋存地质条件的复杂性(如在一块煤 田中,有大落差的断层,而较小的断层更是层出不穷) ,在众多的煤 矿井下支护产品中,单体液压支柱与铰接顶梁配合使用,具有投资 少、受地质条件限制少、使用和维护简单方便且操作灵活等特点,是 我国和东南亚等国家煤矿工作面的支护的主导设备,与综采液压支架 等其他多种支护形式产品将长期并存发展。 单体支护设备经历了三次飞跃发展,分别是 60 年代研制使用的 单体金属摩擦支柱(现已基本淘汰) ,70 年代中期研制 80 年代推广的 活塞式单体液压支柱,90 年代末研制应用的 DWX 型柱塞悬浮式单体液 压支柱,使单体支护设备及支护技术得到突破性发展。 国外主要煤炭生产国中,单体液压支柱曾经在回采工作面广泛使用,最早使用国家在四十年代末就有该产品问世。其后,联邦德国、日本、波兰、苏联等国也相继在五十年代使用。从国外单体液压支柱的使用情况表明,在六十年代初期其技术即达到成熟阶段。三、毕业设计(论文)所用的主要技术与方法1.确定总体方案2.利用液压、机械原理、材料力学、理论力学等知识进行技术设计3.在网上查阅相关资料4.利用CAD或ProE计算机绘图和手工方法绘制相关图5.对所选数据进行分析和计算四、主要参考文献与资料获得情况:1.李炳文 单体液压支柱 煤炭工业部物资供应局出版社,2001 2. 成大先.机械设计手册K.3卷.北京:化学工业出版社,2007. 3. 成大先.机械设计手册K.4卷.北京:化学工业出版社,2007. 4. 机械制图手册5. 成大先.机械设计手册K.2卷.北京:化学工业出版社,2007. 6. 刘鸿文 材料力学 M 北京教育出版社 五、毕业设计(论文)进度安排(按周说明)第56周:查找资料,并确定自己的设计题目并完成开题报告;第710周:开始着手计算与设计并绘制草图;第1113周:计算机绘图,绘制精图;第1415周:修改并完成说明书;第16 周:让指导教师修改设计准备答辩六、 指导教师审批意见: 指导教师: (签名)年 月 日 河南理工大学万方科技学院本科毕业论文摘要本论文所设计的是适用于大倾角煤层使用的单体液压支柱,主要目的是为了保证工作人员的安全。大倾角煤层下很容易发生倾倒、下滑现象,有时甚至会发生冒顶事故。普通的单体液压支柱不能满足要求,所以要对其进行改进,本次主要改进的部位是顶盖部分,由原来的通用式改为现在的防倒式。通过楔卡的安装,其独特的“L”型设计,可以卡住顶梁底部的“”型扁钢,实现了支柱与顶梁的相互结合,这样便在很大程度上缓解了以上可能发生的事故。其次,本次设计除了采用传统的绘图工具AutoCAD实现二维制图外,还利用Pro/Engineer软件进行三维实体造型,充分发挥出了Pro/Engineer的优点,使商家与使用者对产品在感观上有更进一步认识和了解。 关键词:大倾角; 顶盖; 防倒式; 楔卡; 三维实体造型。 AbstractThis paper is designed for large inclination coal bed use monomer hydraulic pillars. Main aim is to ensure the safety of staff, the so-called big inclination coal bed means coal bed inclination than 25 east coal bed。Its main improvements are top part, from a ceremony to present a defense down.Wedge cards through the installation and improvement to underground mining work safer,Secondly, this design tool AutoCAD drawings in addition to using the traditional two-dimensional mapping of achieveme
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:DZ型单体液压支柱设计【10张PDF图纸+CAD制图+文档】
链接地址:https://www.renrendoc.com/paper/122393539.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!