资源目录
压缩包内文档预览:(预览前12页/共83页)
编号:123436430
类型:共享资源
大小:2.12MB
格式:ZIP
上传时间:2021-04-25
上传人:牛***
认证信息
个人认证
霍**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
搅拌机
结构设计
11
CAD
文档
- 资源描述:
-
双轴搅拌机结构设计【含11张CAD图+文档,搅拌机,结构设计,11,CAD,文档
- 内容简介:
-
摘摘 要要双轴搅拌机为螺旋式搅拌机,它的搅拌部件是两根形状对称的同步螺旋转子,两根螺旋轴在旋转时速度同步、方向相反。双轴搅拌机由电机驱动,可用减速机控制转子转动速度,达到最佳的搅拌效果。双轴搅拌机的主要部件包括,机械外壳、两根螺旋转轴、电机驱动装置、联动装置、配管和盖板等,双轴搅拌机的螺旋轴是最重要的工作部分,两根螺旋轴的旋转方向相反,都具有轴承座、轴承套、轴承盖、叶片和联动装置。搅拌机构包括彼此平行的第一和第二搅拌轴、搅拌叶片和卧式搅拌桶,所述搅拌叶片从第一和第二搅拌轴向四周伸出,并在轴向依次等距排列而在圆周方向依顺时针或逆时针彼此相差一固定角度,使在第一和第二搅拌轴上的搅拌叶片分别形成旋向相反的螺旋状排列;所述第一和第二搅拌轴彼此同步转动并且其叶片交错通过由该第一和第二搅拌轴轴线所确定的平面;在所述搅拌桶一端的顶部设有进料口,而在所述搅拌桶另一端的底部设有出料。采用这种结构,搅拌机的搅拌叶片在搅拌干粉砂浆的同时将干粉砂浆从进料口排向进料口,从而实现生产的连续,有效的提高了生产效率。关键词:关键词:双轴搅拌机 螺旋轴 搅拌叶片 生产效率AbstractAbstractBiaxial mixer spiral mixer to its mixing two symmetrical parts are synchronized helical rotor, two screw shaft rotation speed synchronization, in the opposite direction. Biaxial mixer driven by a motor, can control the rotor rotation speed reducer, to achieve the best mixing results. The main components include biaxial mixer, mechanical enclosure, two screw shaft, motor drive, interlocks, piping, and flat tops, dual-axis mixer spiral axis is the most important part, the two helical axis of rotation in the opposite direction , have a bearing, bearing units, bearing caps, leaves and interlocks. Mixing with each other parallel institutions, including the first and second stirring shaft, stirring blades and horizontal mixing barrel, above mixing blade from the first and second axial four weeks out of mixing and axial offset in turn arranged in circle clockwise or counterclockwise direction according to a fixed point of difference with each other, so that in the first and second axis of the mixing blades were stirring the formation of the spiral spin arrangement to the contrary; the first and second mixing shafts rotate simultaneously with each other and their leaves staggered through the mixing of the first and second axes defined plane; in above the top end of the mixing bucket with feed, while the other end of the said mixing drum with the material at the bottom. Using this structure, the mixing blade mixer mixing dry powder in the mortar, while the dry mortar from the inlet to the inlet arrangement in order to achieve continuous production, effectively improve the production efficiency. Keywords: biaxial mixer efficiency helical mixing blade shaft目录目录1 前 言.12 总体方案论证 .42.1 工作原理 .42.2 结构设计特点 .42.2.1 外壳的设计形式 .52.2.2 轴与叶片的安装方法的设计 .62.2.3 传动机构的设计 .82.2.4 密封装置的设计 .82.2.5 雾化装置的设计 .93 预加水双轴搅拌机主要技术参数的计算 .113.1 生产能力的估算 .113.2 主轴转速 的估算 .13n3.3 主轴直径D的估算.133.4 搅拌机内物料轴向运动速度的估算 .14kV3.5 物料在搅拌机内停留时间的估算 .153.6 功率的计算 .164 电机的选择 .194.1 选择电动机类型和结构形式 .194.1.1 选择电动机的容量 .194.1.2 确定电动机转速.20mn4.2 减速机选择 .214.3 计算传动装置的总传动比并分配各级传动比 .215 传动装置的设计计算与校核(确定带传动、齿轮传动的主要参数) .225.1 V 带的设计计算 .225.2 齿轮的设计计算 .265.3 轴的设计计算及校核 .315.4 轴承的校核 .376 预加水双轴搅拌机的安装 .396.1 预加水成球工艺对设备安装的要求 .396.2 双轴搅拌机的安装 .396.3 电动机的安装 .407 设备的使用维护和润滑 .417.1 设备的使用维护 .417.2 设备的润滑 .417.2.1 滑动轴承的润滑 .427.2.2 齿轮传动的润滑.428 结论 .43参考文献 .44致谢 .46 1 1 前前 言言立窑水泥企业的机立窑能否实现优质高产,在一定程度上取决于窑内的锻烧情况,预加水成球技术能改善烧成条件,提高熟料质量。预加水成球是成球技术的一个重大突破,对改善料球质量、减少窑内阻力、提高熟料产量质量、降低烧成热耗等均有明显作用。预加水成球的机理是:将化学成分合格的生料粉与粒径在 1mm 左右的煤按要求配比被调整定量后,与被控制定量后经离心压力式喷嘴雾化器雾化的、粒径约为 100-500 的雾化水同时进入搅拌机。使料水在液固运动中得到充分的均化,并在较短的时间内使含水率达到12-14%。经过约 55-60s 的机械搅拌,使之进一步均化、破团、湿润、渗透。在湿润渗透的过程中,生料粉和水依靠粉体颗粒的表面能和水的表面张力、以及被逐渐激发出来的物料塑料力的综合作用条件下,自由结合为 1-2mm 粒度的料水团状混合物,即松散的含水料团。这就是搅拌积聚预加工的半成品。随即将此半成品经倾斜下料管滑入装置有回转或往复运动式立刮刀和边刮刀的、具有全盘性成球功能的盘式成球机内。入盘后一经滚动即形成 1-2mm 粒径的子球。这些子球在盘转速为 22.5r/min 的倾斜、旋转、离心、大抛物运动中,主1exp1D要依靠物料的塑性粘结力和部分渗出水的表面张力联合作用条件下相互粘连,而真正成为了球的第二个层次。由于筛析效应的作用,当球径停止增长,最后在进料推力的作用被推出盘。全部成球过程大约需要 140-180s。盘径小需要成球时间短,盘径大需要成球时间长。预加水成球的工艺流程为:提升机 稳流仓 料位指示器 单(双)管螺旋喂料机 冲击式流量计 供水管及雾化器 双轴搅拌机 成球盘; 生料在成球盘内制成成品球由皮带输送机1送入机械立窑。实现预加水成球技术的关键设备是双轴搅拌机。其作用是将管式螺旋喂料机喂入的生料首先受水、浸润、渗透后,进行混合、搅拌而成为含水率均匀、粒径为 1-2mm 的子球,供成球机成球用。本课题来源于生产实践。设计该双轴搅拌机有以下几项技术要求:1.必须结合生产实践;2.生产能力 为 Q = 30 t/h;3.进出料口的距离为 3000 mm;4.叶片回转直径为 550mm;5.结构紧凑,工作连续稳定;6.节能、高效、环保。在赵武老师的指导下,首先进行方案论证。通过讨论研究,最终确定了叶片的安装方法:在轴上钻有莫氏锥孔以及铣一方槽,先将叶片焊接在叶片杆上,然后再一起以一定角度焊接在一方垫片上,再将搅拌叶片装入莫氏锥孔中;传动装置整体放置出料口端;传动方式为:电机皮带ZQ 减速机十字滑块联轴器直齿轮传动双轴搅拌机;雾化器选用 MP 型离心压力喷嘴式雾化器。然后根据分析的结果,开始对轴向力、径向力、扭矩以及功率等进行计算。分析拟定传动装置的运动简图,分配各级传动比,进而进行传动零件的结构进行设计和强度校核。然后对双轴搅拌机进行总体结构设计。2J550 型预加水双轴搅拌机改变了以往所成料球粒径大,料球耐压强度和孔隙率质量低的缺陷,并且机槽采用 型,能防止搅拌死角,这样在维修时可以便于将损坏的轴吊起,省去拆叶片麻烦,检修空间增大,工作量减小,还可缩小两端轴孔直径,便于密封防漏。本2课题新颖实用,在技术上有较大改进,具有较强的竞争力,并且有很大的市场前景。32 2 总体方案论证总体方案论证2.12.1 工作原理工作原理双轴搅拌机由两根搅拌轴,轴上按螺旋推进方向安装搅拌叶及搅拌槽组成的搅拌系统,为使原料达到成型的需要,在搅拌机入料端稍后处的上部,设有加水装置,使得物料形成较大的球状块料旋转时两轴的方向由内向外,将物料搅起,靠搅拌叶旋转时的推力(搅拌叶与搅拌轴轴线夹角为 10-20 度)形成物料流,螺旋向前推进,最后物料经漏料箱进入承接皮带,进入到下台处理设备中。图 2-1 双轴搅拌机结构示意1 轴承座; 2 出料口; 3 搅拌叶; 4 搅拌轴;5 搅拌槽;6 齿轮座;7 联轴器;8 减速器;9 三角带轮;10 驱动电动机2.22.2 结构设计特点结构设计特点从结构上看,双轴搅拌机要较单轴搅拌机复杂,但它磨损小,搅拌质量好,生产率高,双轴搅拌机较之立轴式和单轴式搅拌机,具有明显的优越性。双轴搅拌机优点总结如下:1. 搅拌机外形尺寸小、高度低、布置紧凑,装载运输便利,而4且结构合理坚固,工作可靠性好;2. 搅拌机容量大,效率高。与同容量自落式相比,搅拌时间可缩短一半以上,而且物料运动区域位于卸料门上方,卸料时间也比其他机型短,因而生产率高;3. 拌筒直径比同容量立轴式小一半,搅拌轴转速与立轴式基本相同,但叶片线速度要比立轴式小一半,因此叶片和衬板磨损小、使用寿命长,并且物料不易离析;4.物料运动区域相对集中于两轴之间,物料行程短,挤压作用充分,频次高,因而搅拌质量好。.1 外壳的设计形式外壳的设计形式传统的U型槽底容易出现搅拌死角,从而导致两轴负载过大以致断裂。另外他们将两端墙板焊死在机壳上,这样就使得在轴或叶片受损维修时很不方便,工作量也相当大。将双轴搅拌机槽底做成欧米嘎型(),以防止搅拌死角。两边再焊上钢板制成机槽,槽口两边焊有角钢用以固定机盖,槽机底部焊有支承垫用以支承槽体。机槽两端墙板不是焊死在机壳上,而是通过螺栓与机壳联结,这样做的目的是为了在维修时便于将损坏的轴吊起,省去拆叶片麻烦,检修空间增大,工作量减小,还可缩小两端轴孔直径,便于密封防漏,如图 2-2 所示。图 2-2 搅拌槽壳体.2 轴与叶片的安装方法的设计轴与叶片的安装方法的设计以前,大多在整个轴上都安装叶片,生料进口处叶片角度比较大,用以快速输送物料,但是我们发现这样搅拌叶片的磨损较大,靠进料口槽体端密封处漏灰严重,从而齿轮内进灰较多,加快了传动部件的磨损,影响生产效率。因此,针对这些问题对轴的结构进行改造,即在轴的搅拌进口端焊接两螺旋叶片使粉料不断向前输送,减少槽体端部密封处的积料。这样有利于防止打坏叶片、折断轴。在搅拌轴上正确安装带有刀片的叶片,调整好了角度后,再将叶片安装在钻有莫氏锥度孔的轴上,如图2-3所示。叶片在双轴上三个部位的安装角度是各不相同,叶片安装角度一般选用=20度左右,双轴搅拌机叶片角度必须要与粘土可塑性相适应,双轴搅拌机工作分三个阶段:第一阶段是雾化水与原料的混合搅拌阶段;该阶段轴的长度为0.7m 左右(包括螺旋叶片轴段),安装的叶片数是8只,安装角度为25,通过雾化喷水和机械翻动搅拌两个手段以达到液固均化的目的。第二阶段是使含煤生料湿润的阶段,为使其能充分湿润,生料在这一阶段的运行速度应慢一些;该阶段轴的长度为 1.5m 左右,安装的叶片数是 20 个,安装角度为 15,其主要特征是机械搅拌。第三阶段是形成球核的阶段;该阶段轴的长度为1.0m左右,安装的叶片数是12个,安装角度为20,其中最后4只的安装角度是0,其目的是为了挡料。6在调整叶片角度的同时,要注意叶片的转速,这两方面也是相互影响的,在确定转速时首先要确定物料在搅拌机内搅拌的时间,而搅拌时间又影响着形成球核的产量,因此搅拌时间、叶片角度、转速、湿润时间等之间要相互配合好,一般出搅拌机的球核直径为1-2mm的占20%-75%较好。其中每个叶片焊牢在叶片杆上,然后按照要求调整角度焊接在方垫片上。经过这样的处理后,叶片在推动物料时就不会出现角度混乱,另外把搅拌轴头的轴肩R适当调大,减小应力,防止应力集中,如图2-4所示。 图2-3 搅拌机工作简图7图 2-4 叶片安装图.3 传动机构的设计传动机构的设计传动装置是双轴搅拌机工作过程中的关键。设计的传动路线为电机皮带ZQ减速机联轴器齿轮传动装置搅拌轴。 将双轴搅拌机传动装置整体放置出料口端,使生料不能进入齿轮和轴承。同时给两传动齿轮制作一个油池,用于齿轮的润滑,能减小磨损,提高使用寿命。常用的减速机有三种型式,圆柱齿轮减速机、行星减速机和摆线针轮减速机。其中采用圆柱齿轮减速机较合适,而采用行星减速机和摆线针轮减速机常会出现因搅拌机主轴起动时扭矩大,传动系统刚度不足,故障多,有漏油问题。相对而言圆柱齿轮减速机传动稳定,噪音小,齿面接触稳定,在润滑保养良好的条件下,运转稳定。.4 密封装置的设计密封装置的设计对密封装置的要求相当高,可采用双道压盖填料密封装置,填料采用橡胶石墨石棉盘根,两边采用压盖压紧,内压盖、外压盖和密封盖固定采用沉头螺栓紧固,见图2-5。81 密封圈;2 压板1;3 密封盖;4 端面板;5 垫板;6 轴套.5 雾化装置的设计雾化装置的设计水的雾化的好坏,是预加水成球的关键条件之一。它通过雾化器来实现,雾化器设在搅拌机进料口的一端,其作用是担负着生料和水的第一道均匀混合工序的喷水任务,为下一道机械搅拌工序创造良好的均合基础,达到液固均化的目的。为了保证雾化效果,必须对水压、水质、喷嘴及喷嘴布置有一定的要求:1.结构简单,制造方便,成本低,无特殊工艺装备,维修方便,使用寿命长;2.在低能量条件运行应保证足够的喷水能力,MP 型550kg/h,以利用于减少喷嘴组合数量,便于布置;3.水质要干净纯洁,尽量少含泥沙等杂质,以防喷嘴堵塞。水质不好时需在水箱出水口增加过滤网,并定期清洗;4.喷嘴要有适宜的喷射角度,保持适宜的水量和良好的雾化效果,图2-5 密封装置9使布水均匀,直接喷向料层,不能喷向机壳再流向物料;喷嘴离料层距离保持300 mm左右,不能过近,否则,不能保证接触料层被水充分雾化。由于喷嘴的布置形式直接影响搅拌效果和球核的质量,因此应注意:1.喷嘴在搅拌机中的布置原则应分布在进料口落料流及落料区,以实现操作点无粉尘污染;2.保证喷嘴至料面的垂直距离S300 mm,目的是使雾滴同生料粉接触,提高生料的湿润渗透性,否则影响成球的均匀性,并增加清理特大球的工作量;3.多嘴组合应用喷嘴能进一步提高液固均化程度,但多嘴数量要适当;4.喷嘴喷射方向及覆盖面必须在生料面区域内,不得喷射在机槽侧壁上,否则将造成机槽侧壁粘料严重,难以清理,并增加搅拌叶片的阻力,从而提高搅拌的功率消耗,同时也会造成局部生料过湿,影响成球质量。综合各方面的条件,选用MP-型离心压力喷嘴式雾化器(见表2-1)比较合理,其主要特点有:加大了喷液能力,提高到了550 kg/h以上,雾化角为90至120,效果好,而且可减少喷嘴数量。MP型喷嘴内衬中心有一冲水孔,出水口有4个月牙形分水刀,心部4个螺旋槽与垂线相交成45至95角。表2-1 MP-型雾化器规格参数流量kg/h雾化角 喷嘴孔径mm雾化压力MPaLmmDmm含水量%所需水量t/h喷嘴数量个5508520.19732M161.512-143.6-4.210-12103 3 预加水双轴搅拌机主要技术参数的计算预加水双轴搅拌机主要技术参数的计算3.13.1 生产能力的估算生产能力的估算由于双轴搅拌机是以螺旋的形式推进的,所以可应用螺旋输送机的输送能力的机理来推导其搅拌机的估算公式。螺旋输送机的生产能力计算公式如下: (3-1) 4/602nsDQ 其中 - 生产能力,t/h;QD - 螺旋回转直径,m;s - 导程,m;n - 搅拌轴转速,r/min;- 密度,t/;3m- 填充系数。11双轴搅拌机的每相邻搅拌叶片成 90,为不连续装配,物料在间断区不输送物料,只作搅拌运动。所以双轴搅拌机的生产能力要比螺旋输送机小,在上述公式中,还应乘一个小于 1 的系数 K,该系数主要与导程、物料流量、阻力等有关。4/6022nsDQ搅 (3-2)KnsD2 .9421.导程系数sK双轴搅拌机在一个导程上等距分布着 4 个搅拌叶。当搅拌轴转过一周,物料向前推进,导程设为 4Bsin/s,称它为导程系数。 (3-3) sBKs/)sin4(式中 B - 叶片的平均宽度,m;- 叶片的倾角,;s - 导程,m。2.流量系数vK搅拌叶片从切入物料到脱离物料的理论流量为(A 为物sinAB料在搅拌槽中的横截面积) 。搅拌机中的物料属于松散物质,它既具有固体的实体性,也具有液态的流动性。物料在搅拌槽内的运动情况是很复杂的。在搅拌中,物料质点并未沿轴线方向直接移动,而是沿近似垂直的叶片表面的方向作复杂的曲线运动,当叶片穿过物料时,其中一部分物料被向前推进,而另一部分则推到两侧或回退,所以物料的实际推进量要少于理论流量。用 1-1/2sin 来近似表示此时的推进率。另一方面,在叶片扫过区域留下的空间又很快地被两侧的物料所填满,其中也包括前侧物料的回流,由于叶片的阻力作用,使回12流量和叶片角度有一定关系。综合以上两个方面可得, (3-4)cos )sin2/11( vK3.阻力系数fK推进物料所施加的轴向推力随叶片角度的增大而减少,而推力对物料的作用区域也是有限的,叶片在物料运动中产生相对运动,即物料的相互作用而形成内部摩擦力,物料与搅拌槽和搅拌叶等运动产生外摩擦,这些力均阻碍着物料的向前运动,物料速度快慢关系着生产能力大小。 (3-5) )(90/1fK其中 是个经验值,它与导程,摩擦系数和粘度等因素有关,一般可取 0.75 左右。 (3-6) fvsKKKK 综上所述,KnsDQ2 .942总fvsKKKnsD2 .942)(90/1cos )sin2/11 ( )sin4( 2 .942BnD (3-7) 已知设计参数,如下表 3-1,叶片每相邻两叶片成 90,z = 4 , =1.2t/,=15 25, =0.3 ,B = 0.15mm ,=0.75,3m摩擦角 =30。表 3-1 双轴搅拌机技术性能型 号2J5.5搅拌叶片回转直径 D (mm)550进出料口中心距 L (mm)3000两轴中心距 a (mm)360生产能力 Q (t/h)3013功率 P (kW)223.23.2 主轴转速主轴转速 的估算的估算n )(总90/1cos )sin2/11 ( )sin4( 2 .942BnDQ)90/151 (15cos)15sin2/11 (833. 0966. 00871. 0042. 03025. 02 .9430n n = 35.8 min)/(r取 n = 40 min/r3.33.3 主轴直径主轴直径 d d 的估算的估算此时,实际Q)(90/1cos )sin2/11 ( )sin4( 2 .942BnD 15sin15. 0475. 03 . 02 . 14055. 02 .942实际Q)90/151 (15cos)15sin2/11 ( = 33.6 实际Q)/(ht又 )( 460222kVdDQ实际76. 22 . 14 . 0)55. 0(46026 .3322d d = 0.18 )(m但是考虑到实际工作时有可能两轴上的叶片会相互干扰,所以将轴径适当的缩小,在保证强度足够的情况下,取 d = 0.16 m 。3.43.4 搅拌机内物料轴向运动速度搅拌机内物料轴向运动速度的估算的估算kV物料既有轴向位移,也有圆周方向的位移,其主要表现形式为轴向14位移,其圆周位移的轨迹近似于一段螺旋线,是搅拌机中物料实际运动的形式,如图 3.1 所示。螺旋系数 (3-8) )tan(tan11)3015tan(15tan11 79. 0 (3-9) znbVksin1 40.56250.7940sin150.15 76. 2min)/(m式中 - 物料运动速度,m/min;kV - 叶片平均宽度,b =0.15m;b- 叶片安装角度,15;图 3.1 物料受力图15- 搅拌轴转速,r/min;n- 螺旋系数 0.79;-旁侧阻力系数, =0.5625;11 1 个螺距内叶片片数,z =4 片。z3.53.5 物料在搅拌机内停留时间的估算物料在搅拌机内停留时间的估算 kVLt (3-10) 087. 176. 23(min)式中 t - 物料停留时间,min;L - 搅拌机进出料口中心距,3m;- 物料轴向运动速度,2.76m/min。kV物料在搅拌槽内搅拌均匀的停留时间,主要取决于搅拌叶和轴线的角度及轴的转速。如果搅拌叶的角度大,轴的转速快,则物料很快被送出搅拌机,但这时物料的搅拌均匀程度就差,反之,均匀程度就好。所以物料的最佳搅拌时间,应根据搅拌后物料的均匀性及工艺平衡予以确定。3.63.6 功率的计算功率的计算如下图 2.2 所示,单片叶片推动物料前进的轴向推力等于kF。叶片对物料的周向推力,反作用力=,得1kFsFsFsF。)tan(kssFFF16如图 2.2 中,叶片前方的料柱体积是,料柱同机槽槽sRbcos壁的摩擦力: (3-11) 2cossRbFk式中 是旁侧阻力影响系数,取,、 、皆为定值,25 . 12bs摩擦系数。tan从图 3.2 中可知,作用在叶片上有=,=,摩擦力kF1kFkFsFsF=(+) ,是滑动摩擦系数,是止推轴承摩擦系数。1sFkF1f2f1f2f由+= 1f2f2tan(3-12)可得叶片周向力:2sF1ssFF 1ssFF 2tan)tan(kkFF由可以计算出单片叶片消耗的功率 P: 2sF (3-13)单片P029550RnFs式中 - 单片叶片消耗的功率,KW;单片P - 叶片的周向力;2sF - 叶片上单片物料重心与搅拌轴中心的距离,0Rm,。RR65017已知 =8,=20,=12,=25,=15,=20,1z2z3z123R=0.275 m,=tan,b=0.15m, s=0.154=0.6m,=1.2 t/,3m,=1.5。577. 030tantan2 1kF21cossRb 8 . 910005 . 1577. 02 . 16 . 0275. 025cos15. 0 3 .228)(N 2kF22cossRb 8 . 910005 . 1577. 02 . 16 . 0275. 015cos15. 0 3 .243)(N 3kF23cossRb 8 . 910005 . 1577. 02 . 16 . 0275. 020cos15. 0 7 .236)(N 2sF2tan)tan(111kkFF 230tan3 .228)3025tan(3 .228 392)(N图 3.2 叶片受力图182sF2tan)tan(222kkFF 230tan3 .243)3015tan(3 .243 392)(N 2sF 2tan)tan(333kkFF 230tan7 .236)3020tan(7 .236 4 .350)(N 1单片P029550RnFs955055. 0216540392 38. 0)(kW 2单片P 029550RnFs955055. 02165405 .313 30. 0)(kW 3单片P 029550RnFs955055. 02165404 .350 34. 0)(kW 332211单片单片单片总PzPzPzP34. 0123 . 02038. 08 12.13)(kW4 4 电机的选择电机的选择4.14.1 选择电动机类型和结构形式选择电动机类型和结构形式.1 选择电动机的容量选择电动机的容量按工作条件和要求,选用一般用途的 Y 系列三相异步电动机,为卧式封闭结构。19经分析计算得双轴搅拌机所需消耗的总功率 KW;12.13总P电动机所需功率 (4-1)总PP 0由经验及实践选择,整个传动过程中有 6 对轴承,1 对齿轮,二级减速器一部,一对联轴器,电机采用 V 带传动,它们的传动效率可查阅参考资料15得出如下表 4-1。表 4-1 机械传动效率类 别传 动 形 式效 率(%)圆柱直齿轮传动7 级精度(稀细润滑)0.98 0.99带 传 动V 带 传 动0.96轴 承(一 对)滚动轴承(球轴承取最大)0.99 0.995联 轴 器弹性联轴器0.99 0.995减 速 器两级圆柱齿轮减速器0.95 0.96从电动机至搅拌机的主轴的总效率为: (4-2) 联轴器减速器齿轮轴承带6 99. 095. 098. 0995. 096. 06 8586. 0 3 .158586. 012.130总PP)(kW选取电动机的额定功率,使 mP3 .15)3 . 11 ()3 . 11 (0PPm 89.193 .15 )(kW查参考资料15得,取= 18.5 mPkW.2 确定电动机转速确定电动机转速mn20取 V 带传动比(减速器)5342ii齿轮带,总传动比的合理范围=18100,故电动机转速的可选范围i为 mn4010018)(主轴ni 400020min)/(r 查参考资料13,符合这一转速范围的同步转速有 750r/min,1000 r/min,1500 r/min,3000 四种,由标准查出三种适合的电动机的型号,列表如下 4-2。表 4-2 传动比方案对照电动机转速/1minr传动装置的传动比方案电动机型号额定功率/KWmP同步满载电动机的质 量 kg 总传动比V 带传动减速器1Y160L-218.52930300014773.257.325102Y180M-418.51460150018236.53.65103Y200L1-618.5970100022024.252.425104Y225S-818.573075027018.251.82510综合考虑电动机和传动装置的尺寸,结构和带传动及减速器的传动比,方案二比较适合所以选定电动机的型号为 Y180M-4。4.24.2 减速机选择减速机选择查参考资料15,选定减速器的型号为 ZQ500,=10.29,其中实i=2.5,=4;中心距:a=500、a1=200、a2=300;中心高:Hc=高i低i;最大外形尺寸:L=986、B=350、H=590;主动轴:01300d1=50、d2=85;被动轴:d3=80、d4=90。214.34.3 计算传动装置的总传动比并分配各级传动比计算传动装置的总传动比并分配各级传动比电动机选定后,根据电动机的满载转速及工作轴的转速mn即可确定传动装置的总传动比 。主轴n主轴nnim 具体分配传动比时,应注意以下几点:a. 各级传动的传动比最好在推荐范围内选取,对减速传动尽可能不超过其允许的最大值。b. 应注意使传动级数少传动机构数少传动系统简单,以提高和减少精度的降低。c. 应使各级传动的结构尺寸协调、匀称利于安装,绝不能造成互相干涉。d. 应使传动装置的外轮廓尺寸尽可能紧凑。传动装置的总传动比为5 .36i分配各级传动比:,。65. 3带i10减速机i1齿轮i5 5 传动装置的设计计算与校核(确定带传动、齿轮传动装置的设计计算与校核(确定带传动、齿轮传动的主要参数)传动的主要参数)5.15.1 V V 带的设计计算带的设计计算 已知 V 带为水平布置,所需功率 P = 18.5 kW,由 Y 系列三相异22步电动机驱动,转速=1460 r/min,从动轮转速=400 r/min,每天1n2n工作 24 小时。表 5-1 V 带的设计计算与校核设计项目设计依据及内容设计结果1.选择 V 带型号(1)确定计算功率caP(2)选择 V 带型号查参考资料12表 4.6 得工作系数由3 . 1AK=caPAK05.245 .183 . 1PkW按、查KWPca05.24min/14601rn 图 4.11,选 C 型 V 带 5 .24caPkW选用 C 型 V 带2.确定带轮直径、1dd2dd(1)选取小带轮直径1dd(2)验算带速v(3)确定从动带轮直径2dd(4)计算实际传动比i参考图 4.11 及表 4.4,选取小带轮直径mmdd2001由式)100060/(1ndvdsm/100060/1440200)(12dddidmm730200400/1460查表 4.4 200/750/12ddddi 2001ddmm 3 .15vsm/在 200800 vm/s 内,合适。取7502ddmm75. 3i(5)验算从动轮实际转速2n 75. 3/1460/12innmin/r(389.3-400)/400100% = 2.67%5%3 .3892nmin/ r允许233.确定中心距和带长adL(1)初选中心距0a由式得)2)(7 . 012012ddddddadd( 续 表 5-1设计项目设计依据及内容设计结果(2)求带的计算mmamm)750200(2)750200(7 . 00665 1900 mm0amm取mma12000(3)基准长度0L(4)计算中心距a(5)确定中心距调整范围由式021221004)()(22addddaLddddmm5 .3954)12004/()200750(2/)750200(120022查表 4.2 得mmLd4000由式mmaLLaad)25 .395440001200(200得由式mmammaLaaLaadd)4000015. 01223()400003. 01223(015. 0,03. 0minmaxminmax得4000dLmm 1223ammmmamma11631343minmax244.验算小带轮包角1由式1205 .15260120020075018060180121adddd合适,5 .15215.确定 V 带根数 z(1)额定功率0P由、及查表mmdd200114601n4.5 得单根 C 型 V 带的额定功率为86. 5kW86. 50pkW设计项目设计依据及内容设计结果(2)确定 V 带根数 z确定0P确定包角系数K由式,LcaKKPPPz)(00查表 4.7 得KWP27. 10查表 4.8 得93. 0KKWP27. 1093. 0K确定长度系数LK计算 V 带根数 z 查表 4.2 得02. 1LK根根5 . 302. 193. 0)27. 186. 5(05.24)(00LcaKKPPpz02. 1LK取 z=4 根,合适6.计算单根 V 带初拉力0F查表 4.1 得mkgq/3 . 025由式,20) 15 . 2(500qvKvzPFcaNF3 .153 . 0) 193. 05 . 2(43 .155 .2450020NF40807.计算对轴的压力QF由式NzFFQ)25 .152sin40842(2sin210NFQ5 .31708.确定带轮结构尺寸,绘制带轮工作图,采用腹板式结构,工作图mmdd2001如附图 18;,采用辐条式结mmdd7502构,工作图如附图 165.25.2 齿轮的设计计算齿轮的设计计算已知输入功率,,电动机驱动,两齿轮5 .13PkWmin/40rn 传动比,工作寿命 10 年,每年工作时间 300 天,两班制,工作平1i稳,齿轮转向不变,要求结构紧凑。表 5-2 齿轮的设计计算设计项目设计依据及内容设计结果261.选择齿轮材料热处理方法、精度等级,齿数、及齿宽系数1z2zd考虑到该功率较大,故两齿轮都调质处理,齿面硬度分别为 260HBS,属硬齿面闭式传动,载荷轻微冲击,齿轮速度不高,初选 7 级精度,两齿轮齿数的,按照硬齿面齿轮悬臂布置6021 zz安装,查参考资料12表 6.5,取齿宽系数5 . 0d两齿轮都选用调质处理齿面硬度分别260HBS,初选 7 级精度; 6021 zz取齿宽系数5 . 0d272.按齿面接触疲劳强度设计(1)确定公式中的各参数值 载荷系数tK 齿轮传递的转矩T 材料系数EZ 大、小齿轮的接触疲劳强度极限2lim1limHH、 应力循环系数 接触疲劳寿命系数12HNHNKK、由式, 3211132. 2HEdtZiiKTd试选5 . 1tKmmNnPT403 .151055. 91055. 9616查表 6.3 得 =189.8EZMPa按齿面硬度查图 6.8 得 MPaHH5602lim1lim82110152. 116300101406060hnjLNN95. 021HNHNKK5 . 1tKmmNT1065. 36=189.8EZMPaMPaMPaHH5605602lim1lim828110152. 110152. 1NN95. 021HNHNKK28 确定许用接触应力21HH、取安全系数1HsMPasKHHNHH56095. 0/1lim121MPaMPaHH53253221(2)设计计算 齿轮分度圆直径1td 计算圆周速度v 计算载荷系数 K 校正分度圆直径1d32615328 .1891115 . 01065. 35 . 132. 2tdsmndvt/65. 0100060405 .31110006011 查表 6.2 得使用系数;根据1AK,7 级精度查图 6.10 得:动smv/66. 7载系数;查 6.13 图得:1.1vK 15. 1K则265. 115. 11 . 11KKKKvA由式:mmKKddtt5 . 1/265. 15 .311/11 5 .3111tdmm 65. 0vsm/265. 1K 3 .2941dmm29(3)计算齿轮传动的几何尺寸 计算模数 m 两轮分度圆直径12dd、 中心矩a 齿宽 b 齿高 h9 . 460/3 .294/11zdmmm60621mzddmmmmzzma6062/ )(211803605 . 0121dbbdmm625. 225. 2mhmm取 6mmm36021 ddmm360amm18021 bbmm5 .13hmm303.校核齿根弯曲疲劳强度 (1) 确定公式中各参数值 两齿轮弯曲疲劳强度极lim1lim2FF、 弯曲疲劳寿命系数12FNFNKK、 许用弯曲应力21FF、齿形系数12FaFaYY、和应力修正系数12SaSaYY、计算两齿轮的和111FSaFaYY 222FSaFaYY(2) 校核计算 由式 2321FSaFadFYYmzKT查图6.9得 :取 MPaFF2202lim1lim 90. 021FNFNKK MPaSYKFFSTFNFF8 .2824 . 1/290. 0220/1lim121查表6.4得取77. 122. 22121SaSaFaFaYYYY014. 086.28277. 122. 2222111FSaFaFSaFaYYYY53.4077. 122. 266011017. 3265. 1232621FFFMPaMPa MPaMPaFF2202202lim1lim90. 021FNFNKKMPaMPaFF8 .2828 .2822177. 122. 22121SaSaFaFaYYYY53.4021FFFMPa弯曲疲劳强度足够315.35.3 轴的设计计算及校核轴的设计计算及校核 轴的材料选用 45 钢调质,它的结构尺寸与装配图见附图 表 5-3 轴的校核计算设计项目设计依据及内容设计结果1求轴上的载荷(1)计算齿轮受力参见齿轮设计参数及附图 2J55.00.03-04齿轮的分度圆直径60611 mzdmm3601dmm圆周力NdTFt360/1065. 32/261NFt41002. 2径向力20tan1002. 2tan4trFFNFr41074. 0(1)计算搅拌叶片受力叶片的周向推力参见图 3.2叶片安装角度为 25时, NFs392;叶片安装角度为 15时,NFk3 .228392sFN5 .313sFN图 5-1 直齿圆柱齿轮受力分析图32,轴向推力sFkF,;叶片安NFs5 .313NFk3 .2434 .350 sFN装角度为 20时, ,4 .350 sFN7 .236 kFN3 .228kFN3 .243kFN7 .236 kFN(1)求支反力 求zx 平面内作用在轴上的支反力 求平面内作yx 用在轴上的支反力, 0AM5 .75BzFN, 0BM5 .112AzFN,0AM7 .187ByFN, 0BM6 .224AyFN5 .75BzFN5 .112AzFN7 .187ByFN6 .224AyFN2绘制弯矩图和扭矩图见图 5.23弯矩合成强度校核通常只校核轴上受最大弯矩和扭矩的截面的强度。危险截面截面处计算弯矩截面处计算应力强度校核考虑启动、停机影响,扭矩为脉动循环变应力,, 6 . 0221)(TMMcaMPa222)36500006 . 0(127853154065MPaWMcaca)1601 . 0/(2199132/345 钢调质,由表 11.2 查得MPa601mmNMca21991324 . 5ca331ca弯矩合成强度满足要求4疲劳强度安全系数校核不计轴向力产生的压应力的影响va(1)截面 C 左侧强度校核抗弯截面系数抗扭截面系数3331601 . 01 . 0mmdW3331602 . 02 . 0mmdWT3409600mmW 3819200mmWT截面上的弯曲应力截面上的扭转切应力MPaWMb409600/200206/MPaWTTT819200/3650000/MPab49. 0MPaT46. 4平均应力弯曲正应力为对称循环弯应力,扭转切应力为脉动2/ )(minmaxm循环变应力,。MPam23. 22/ )(minmax0mMPam23. 2应力幅ba2/ )(minmaxma2/ )(minmaxMPaa49. 0MPam46. 4材料的力学性能45 钢调质,查表 11.2MPaMPaMPaB1552756401134轴肩理论应力集中系数,036. 0140/5/dr,查附表 1.6,并经14. 1140/160/dD插值计算MPa05. 2MPa30. 1材料的敏性系数由,查图 2.8 并mmr5MPaB640经插值88. 085. 0qq有效应力集中系数) 105. 2(85. 01) 1(1qk) 13 . 1 (88. 01) 1(1qk89. 1k26. 1k尺寸及截面形状系数由、 查图 2.9mmh6mmd14055. 0扭转剪切尺寸系数由查图 2.10mmD16062. 0表面质量系数和强化系数轴按磨削加工,由 查图MPaB6402.12192. 0q疲劳强度综合影响系数192. 0/162. 0/26. 11/1/192. 0/155. 0/89. 11/1/kKkK12. 252. 3KK等效系数45 钢:,2 . 01 . 01 . 005. 0取,1 . 005. 0仅有弯曲正应力时的计算安全系数01 . 049. 052. 32751maKS159S35仅有扭转切应力时的计算安全系数46. 405. 023. 212. 21551maKS3 .31S弯扭联合时的计算安全系数22223 .311593 .31159SSSSSca71.30caS设计安全系数材料均匀,载荷与应力计算精确时:5 . 13 . 1 S 取5 . 1S疲劳强度安全系数校核SSca轴的疲劳强度合格36图 5-2 轴的受力图与弯矩图375.45.4 轴承的校核轴承的校核现选一对角接触球轴承 7228AC,轴转速 n=40r/min,轴向力,径向负荷分别为。工作时KNF39. 5112.22.1rFKNKNr2、F有中等冲击,脂润滑,正常工作温度,预期寿命 200000h。表 5-4 轴承的校核计算设计项目设计内容及依据设计结果1 确定 7228AC轴承的主要性能参数查滚动轴承产品样本得87. 0,68. 0,235,230250YeKNCKNCrr,2 计算派生轴向力12SSFF、NFeFNFeFrSrS2 .25168. 03 .20268. 02211NFNFSS8 .1706 .137213 算轴向负荷12aaFF、 116 .4212)40756 .137(SaeSFNNFF故轴承被压紧,轴承被放松,得:NFFNFFFSaaeSa8 .1706 .42122221NFNFaa8 .1706 .4215124 确定系数122XXY1、Y、eFFeFFrara17. 010008 .17003. 140756 .42122211查表 8.10 得0, 1,87. 0,41. 02211YXYX0, 1,87. 0,41. 02211YXYX5 计算当量动负荷12PP、NFYFXPNFYFXParar100016 .421287. 0407541. 02222211111NPNP10007 .5335216 计算轴承寿命已知 =3,查表 8.7、8.8 得:1.61Ptff、hLh49560638hPfCfnLpth37 .53355 . 1848004016667166677 验算轴承是否合适hhLh200000495606 该轴承合格。396 6 预加水双轴搅拌机的安装预加水双轴搅拌机的安装6.16.1 预加水成球工艺对设备安装的要求预加水成球工艺对设备安装的要求由于桨叶式双轴搅拌机在机械结构上看,其双轴是不可能用等位提升的方法卸出机壳,它必需从机体纵向水平抽出机壳。因此,为了方便检修,搅拌机在平台上的布置位置在纵向必需留有双轴水平抽出的位置。入搅拌机的进料管应与水平线呈 55以上的角,以便生料粉从搅拌机的进料端部滑入机内,为实现无粉尘操作环境创造有利条件。搅拌机的出料口应配置有“地方”大于“天圆”的“天圆地方”过渡管接头下部采用直径不小于 300mm 的圆管,其水平线的夹角不得小于 60,以免含水物料在管内的粘结。6.26.2 双轴搅拌机的安装双轴搅拌机的安装双轴搅拌机都具有整体槽钢机座,安装时应首先时壳体与机座吊装就位,然后将双轴放置在准确的位置,再将端面板焊接壳体上,装好轴承座,接着在轴的主动端装上一对齿轮及齿轮罩或罩壳;将减速机、电动机以及联轴器连接,最后装上搅拌叶片。根据现场条件传动装置可装在进料端。安装具体要求是:1.双轴就位后,其两轴中心线的平行度误差不大于 1.5mm,两轴中心线的连线的水平误差不大于 2mm;2.搅拌叶片与壳体的间隙应保证在 58mm 以内。间隙小,壳体上的集料易清理,双轴旋转运动阻力较小;间隙大,集料难以清理,运动阻力大,易在操作中发生震动;403.齿轮齿顶间隙应控制在 2.53mm;4.双轴两端轴承轴向游隙应不小于 1.5;5.搅拌机进料管的安装必须呈大于 60的倾角,不得垂直进料。出料管的安装必须根据工艺要求呈 6065的倾斜状态,亦不得垂直出料。6.机壳密封性能应良好、可靠,不得漏水漏灰;7.为防止机壳集料增加运动阻力和清料的劳动强度,机壳内可附设 35 厚的工程塑料料板,或涂以耐磨树脂,改变含水生料在壳体上的吸附性质;8.轴旋转方向应呈自上从外侧向下的形式。6.36.3 电动机的安装电动机的安装 电动机安装时要考虑到 V 带的安装与拆换方便。由于考虑到实际工作过程中空间的布置的需要,将电动机安装在电动机滑轨上面,这样不仅避免了拆换不方便的问题,而且还有助于带轮的张紧,非常实用。417 7 设备的使用维护和润滑设备的使用维护和润滑7.17.1 设备的使用维护设备的使用维护由于双轴搅拌机属于大型、重载、低速、高能耗的设备,且它的工作条件由工艺过程中的工艺特性决定,都具有高温、高磨损、高粉尘的工作特点。因此,及时进行调整、紧固、润滑,使之保持良好的工作条件,延长设备的寿命有重要意义。1.检查所有螺钉和螺栓的紧固情况,发现松动应及时拧紧;2.每班给加油点注油一次以及检查圆柱齿轮减速机油标上的油位的高低;3.因搅拌机叶片磨损严重,未经碳化钨喷涂的叶片使用寿命仅有一个月,经喷涂处理后的叶片寿命可提高数倍。因此,要经常检查叶片的磨损情况,在更换搅拌叶片时,应严格控制叶片的安装角度,以免影响搅拌机的产量和搅拌质量。要特别注意搅拌叶片的断裂,断裂时应及时停机取出断裂部分,以免进入下道工序引起连锁反应造成更大的破坏。4.经常检查雾化喷嘴水路系统的水量和水压以及喷嘴是否堵塞。5.要经常检查齿轮减速机和传动齿轮箱的润滑和磨损情况,发现异常现象要及时处理。6.在正常工作中,搅拌机机壳边缘经常有积料,要求每班下班前应将积料清除干净,以免积料硬化于下一次开机时搅拌轴卡死,引起设备损坏。7.经常检查搅拌轴进料端的密封,发现密封处漏灰应及时修理。7.27.2 设备的润滑设备的润滑42预加水成球设备的润滑工作是维护工作中及其重要组成部分和关键环节,及时、正确、合理地润滑个零件部分,能减少摩擦阻力,降低动力消耗,减少磨损,延长使用寿命,充分发挥设备效能,并有助于安全运行。双轴搅拌机是在高温、干粉尘的环境中工作,因而它的减速机、轴承、齿轮等润滑部位要经常的清洗和换油。.1 滑动轴承的润滑滑动轴承的润滑滑动轴承的润滑剂,一般情况采用普通矿物润滑剂和润滑脂,高温重载时可用合成油、水和其他液体。在双轴搅拌机工作时滑动轴承的速度低、中等负载,因此,选用润滑脂润滑。.2 齿轮传动的润滑齿轮传动的润滑双轴搅拌机的齿轮传动采用的是闭式齿轮传动,齿轮采用粘度为3846 cst50的 50 号的润滑油以及油池浸浴法进行润滑。438 8 结论结论预加水双轴搅拌机可以使水的雾化和双轴的搅拌,使物料得到充分的浸润,并搅拌成球,能为成球机成球提供有利条件,对改善料球性能,提高料球质量,降低能耗,提高立窑产量,具有十分重要的作用。它的主要创新特点在于搅拌叶片的安装方法,壳体两端焊接盖板,目的是为了在叶片损坏或轴断裂时方便拆装,减少工作量,有利于节省成本,有一定的经济性。44 参考文献参考文献1 许林发主编. 建筑材料机械设计(一) .武汉:武汉工业大学出版社, 19902 褚瑞卿主编. 建材通用机械与设备.武汉:武汉理工大学出版社, 19963 朱昆泉,许林发.建材机械工业手册.M.武汉:武汉工业大学出版社,2000.74 胡家秀主编.机械零件设计实用手册.北京:机械工业出版社,1999.105 李益民主编.机械制造工艺设计手册.北京:机械工业出版社,1995.106 甘永立.几何量公差与检测M.上海:上海科学技术出版社,2001.47 钱志锋,刘苏工程图学基础教程M.北京:科学出版社,2001.98 徐灏.机械设计手册M.北京:机械工业出版社,1991.99 赵忠.金属材料与热处理M.北京:机械工业出版社,1991.510 阎瑞敏,常敏. .水泥工业自动控制预加水成球技术及装备M.江苏科学技术出版社,1990.1011 黄有丰.预加水成球技术及其应用M.北京:中国建筑工业出版社,1991.912 徐锦康.机械设计M.北京:高等教育出版社,2004.413 王旭,王积森.机械设计课程设计M.北京:机械工业出版社,2003.814 张一公.常用工程材料选用手册M.北京:机械工业出版社,1998.615 盛君豪.减速机使用技术手册M.北京:机械工业出版社,199216 吴瑞琴.滚动轴承产品样本M.北京:机械工业出版社,中国石化出版社,20004517 刘伟辉.预加水成球常见问题与对策J. 吉林建材.2003(1),21-23.18 孙素贞.对提高预加水成球设备性能的探讨J.Research & Application of Building Materials.2001(2),22-23.19 朱卫权.双轴搅拌机主轴断裂原因J. 砖瓦 1998(3),11.20 谢序文.双轴搅拌机断轴原因分析及处理措施J. Cement.1995(5),10-11.21 余易茗.双轴搅拌机的改造 J.中国建材设备.1995(2),32-33.22 蒙强.4503000m 双轴搅拌机的改造 J.四川水泥.2005(2),30.23 潘村禾.对预加水双轴搅拌机结构改进J.水泥.1997(10),21-22.24 彭其雨.提高立窑预加水成球质量的情况介绍J. 福建建材.2002(4),18-19.25 刘玉金.亦谈双轴搅拌机进料端密封装置的改进J. 水泥.1995(12),23.46致谢 为期三个月的毕业设计已经结束,在整个毕业设计过程,我结合实践知识与理论知识不断地进行探索学习,虽遇到不少难以解决的问题,但我感到受益匪浅。本次毕业设计的课题是 2J5503000 预加水双轴搅拌机。本设计是解决预加水小料球快速煅烧技术中的成球问题,立窑水泥生产企业对此项目的要求很高。本设计是学完所有大学期间本专业应修的课程和完成毕业实习以后所进行的,是对我三年半来所学知识的一次大检验,也是对我实习过程的再学习,使我能够在毕业前将理论与实践更加融会贯通,并且学到了许多教材上没有的知识点,加深了我对理论知识的理解,加深了我对水泥机械和水泥生产工艺的认识,提高了对实际生产的感性认识。 通过此次毕业设计,我掌握了最新的预加水成球技术、预加水双轴搅拌机的设计方法和步骤,以及认识到了在设计过程中所应注意的问题,特别是电动机的安装问题,还有轴承座和壳体部件的设计,学习了解决问题的方法,通过使用类比法对现有的一些结构进行了改进,同时也强化了应用图书、手册和网络搜索资料信息等的能力。 总之,这次设计,使我在对基本理论的综合运用以及正确解决实际问题等方面得到了一次非常好的锻炼,提高了我思考问题、解决问题以及创新设计的能力,缩短了我与工厂工程技术人员的差距,并且使我对这个专业更加地了解了,为我今后从事实际工程技术工作奠定了坚实的基础。此次毕业设计是在赵武老师的认真指导下进行的,赵老师为我解47答了一系列的疑难问题,以及指导了我的思想,引导了我的设计思路。在历经三个多月的设计过程中,一直热心的辅导,其他同学在设计过程中也给予我不少帮助,在此,我忠心地向他们表示诚挚的感谢和敬意!附录附录:外文资料与中文翻译外文资料与中文翻译外文资料外文资料:Comparing mixing performance of uniaxial and biaxial bin blenders Amit Mehrotra and Fernando J. MuzzioDepartment of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08855, United StatesReceived 17 February 2009; revised 30 May 2009; accepted 14 June 2009. Available online 27 June 2009.AbstractThe dynamics involved in powder mixing remains a topic of interest for many researchers; however the theory still remains underdeveloped. Most of the mixers are still designed and scaled up on empirical basis. In many industries, including pharmaceutical, the majority of blending is performed using “tumbling mixers”. Tumbling mixers are hollow containers which are partially loaded with materials and rotated for some number of revolutions. Some common examples include horizontal drum mixers, v- blenders, double cone blenders and bin blenders. In all these mixers while homogenization in the direction of rotation is fast, mediated by a convective mixing process, mixing in the horizontal (axial) direction, driven by a dispersive process, is often much slower. In this paper, we experimentally investigate a new tumbling mixer that rotates with respect to two axes: a horizontal axis (tumbling motion), and a central symmetry axis (spinning motion). A detailed study is conducted on mixing performance of powders and the effect of critical fundamental parameters including blender geometry, speed, fill level, presence of baffles, loading pattern, and axis of rotation. In this work Acetaminophen 48is used as the active pharmaceutical ingredient and the formulation contains commonly used excipients such as Avicel and Lactose. The mixing efficiency is characterized by extracting samples after pre-determined number of revolutions, and analyzing them using Near Infrared Spectroscopy to determine compositional distribution. Results show the importance of process variables including the axis of rotation on homogeneity of powder blends.Graphical abstractThe dynamics involved in powder mixing remains a topic of interest for many researchers; however the theory still remains underdeveloped. Most of the mixers are still designed and scaled up on empirical basis. In many industries, including pharmaceutical, the majority of blending is performed using “tumbling mixers”. In all these mixers while homogenization in the direction of rotation is fast, mediated by a convective mixing process, mixing in the horizontal (axial) direction, driven by a dispersive process, is often much slower. In this paper, we experimentally investigate a new tumbling mixer that rotates with respect to two axes: a horizontal axis (tumbling motion), and a central symmetry axis (spinning motion).Keywords:Powder mixing ; Cohesion; Blender ; Mixer; Relative standard deviation; NIR; AcetaminophenArticle Outline1.Introduction2.Materials and methods2.1. Near infrared spectroscopy2.2. Bin blenders used in this study: uni-axial blender (Blender 1), bi-axial blender (Blender 2)2.3. Experimental method493.Results4.ConclusionReferences1. IntroductionParticle blending is a required step in a variety of applications spanning the ceramic, food, glass, metallurgical, polymers, and pharmaceuticals industries. Despite the long history of dry solids mixing (or perhaps because of it), comparatively little is known of the mechanisms involved 1, 2 and 3. A common type of batch industrial mixer is the tumbling blender, where grains flow by a combination of gravity and vessel rotation. Although the tumbling blender is a very common device, mixing and segregation mechanisms in these devices are not fully understood and the design of blending equipment is largely based on empirical methods. Tumblers are the most common batch mixers in industry, and also find use in myriad of application as dryers, kilns, coaters, mills and granulators 4, 5, 6, 7 and 8. While free-flowing materials in rotating drums have been extensively studied 9 and 10, cohesive granular flows in these systems are still not completely understood. Little is known about the effect of fundamental parameters such as blender geometry, speed, fill level, presence of baffles, loading pattern and axis of rotation on mixing performance of cohesive powders or the scaling requirements of the devices. However, conventional tumblers, rotating around a horizontal axis, all share an important characteristic: while homogenization in the direction of rotation is fast, mediated by a convective mixing process, mixing in the horizontal (axial) direction, driven by a dispersive process, is often much slower.In this paper, we experimentally investigate a new tumbling mixer that rotates with respect to two axes: a horizontal axis (tumbling motion), and a central symmetry axis (spinning motion). We examine the effects of fill level, mixing time, loading pattern and axis of rotation on the mixing performance of a free-flowing matrix of Fast Flo lactose and Avicel 102, containing a moderately cohesive API, micronized Acetaminophen. We use extensive sampling to characterize mixing by tracking the evolution of Acetaminophen homogeneity using a Near Infrared 50spectroscopy detection method. After materials and methods are described in Section 2, results are presented in Section 3, followed by conclusions and recommendations, which are presented in Section 4.2. Materials and methodsThe materials used in the study are listed in Table 1, along with their size and morphology. Acetaminophen is blended with commonly used excipients and is used as a tracer to evaluate the degree of homogeneity achieved as a function of number of revolutions. Acetaminophen is one of the drugs most widely used in mixing studies, and Avicel and Lactose are commonly used pharmaceutical excipients. In the interest of brevity their SEM images are not included in this paper, but can be found in “Handbook of Pharmaceutical excipients”.2.1. Near infrared spectroscopyAcetaminophen homogeneity was quantified using near infrared spectroscopy. A calibration curve was constructed for a powder mixture containing (in average) 35% avicel PH 102, 62% lactose and 3% acetaminophen. Near infrared (NIR) spectroscopy can be a useful tool to characterize acetaminophen. Samples are prepared by keeping the ratio of Avicel to lactose randomized in order to minimize effects of imperfect blending of excipients during the actual experiments on the accuracy of the results. The Rapid Content Analyzer instrument manufactured by FOSS NIR Systems (Silver Spring, MD) and Vision software (version 2.1) is used for the analysis. The samples are prepared by weighing 1 g of mixture into separate optical scintillation vials; (Kimble Glass Inc. Vineland, NJ) using a balance with an accuracy of 0.01 mg. Near-IR spectra are collected by scanning in the range 11162482 nm in the reflectance mode. Partial least square (PLS) regression is used in calibration model development using the second derivative mathematical pretreatment to minimize the particle size effects. As shown in Fig. 1, excellent agreement is achieved between the calibrated and predicted values.51 Fig. 1.Fig. 1. Near Infrared (NIR) spectroscopy validation curve. The equation used to predict acetaminophen concentration is validated by testing samples with known amounts of acetaminophen concentration. The y axis represents the concentration calculated from the equation and the x axis represents the actual concentration. Thus a perfectly straight line at 45 would represent the best calibration model. Each point on the graph represents a single sample. The concentration of acetaminophen examined here ranges from 0 to 8%.2.2. Bin blenders used in this study: uni-axial blender (Blender 1), bi-axial blender (Blender 2)Due to its widespread use, a cylindrical blender 1 with a capacity of 30 L is chosen as a reference blender in the study. As shown in Fig. 2, this blender has a circular cross section and tapers at the bottom. It can be used with or without baffles, which are mounted on a removable lid. In this study all the experiments are conducted without the use of baffles. Mixing performance in this device is used to provide a base-line for evaluating the mixing performance of a newly developed blender 2 with a capacity of 40 L, which is also cylindrical, in order to determine the effect of dual axis of rotation on mixing performance. The blender shown in Fig. 2(b) has two axis of rotation. The spinning rate of precession relative to the central axis of symmetry is geared to be half of that of the rate of rotation around the horizontal axis.52 Fig. 2.Fig. 2. Pictorial representation of (a) bin blender 1 and (b) bin blender 2 showing the corresponding axis of rotation.2.3. Experimental methodTwo types of initial powder loading used in the experiments: topbottom loading and sideloading, which are schematically represented in Fig. 3. To avoid agglomeration, the API, acetaminophen, was delumped prior to loading it into the blender by passing it through a 35 mesh screen. In order to characterize mixing performance, a groove sampler was used to extract samples from the blenders at 7.5, 15, 30, 60, 120 revolutions. The thief was carefully inserted in the bin, and a core was extracted at each point of insertion (each “stab”) minimizing perturbation to the powder bed remaining in the blender. Approximately 7 samples are taken from each thief stab, and a total of five stabs are used at each sampling time, as shown in Fig. 4 so a total of 35 samples are taken at each sampling point. Fig. 3.Fig. 3. Schematic of the loading pattern used in the study. In topbottom loading, Avicel is loaded first into the blender followed by Lactose on top of it and finally Acetaminophen is uniformly sieved over. In sideside loading avicel is placed at the bottom and then Acetaminophen is only sieved only in half part of the blender and is sandwiched between lactose and Avicel. Fig. 4.Fig. 4. (a) Thief sampler (b) top view of the sampling position scheme.53The experimental plan used in this study is as follows: Fill level: blender 160% Fill level: blender 260%, 70%, 80% Loading pattern: blender 1 sideside loading, topbottom loading Loading pattern: blender 2 sideside loading, topbottom loading Speed: blender 115 rpm, 20 rpm, 25 rpm Speed: blender 2 rotational/spinning:15/7.5 rpm, 20/10 rpm, 30/15 rpm Sampling time: blender 1, blender 27.5, 15, 30, 60, 120 revolutions3. ResultsThe homogeneity index used is the RSD, where C is the concentration of each individual sample, C_ is the average concentration of all samples and n is the total number of samples obtained at a given sampling time.We examine the effect of fill level on mixing performance. Previously there have been studies on the effect of fill level in the Bohle bin blender, Gallay bin blender and V- blender and double cone blender 11, 12 and 13. All the aforementioned blenders have only one axis of rotation, therefore the objective of this study is to examine how dual axis impact mixing performances at high fill levels. To avoid repetition, studies for fill level are not conducted for bin blender 1. Results available from a previous study using MgSt as a tracer showed that mixing in a uni-axial blender slowed down quite dramatically as the fill level exceeded 70%. Moreover, results for acetaminophen can be assumed to be similar to those obtained in previous work by Muzzio et al. 11 and 13, for a single axis rectangular bin blender 11, which have shown that even after few hundred revolutions homogeneity achieved with a 80% fill level is very poor as compared to 60% fill level.To examine the effect of fill level in a dual axis blender, experiments were performed in blender 2 with the top-bottom loading pattern for a 54rotational speed of 15 rpm and with spinning speed of 7.5 rpm. The fill levels examined are 60%, 70% and 80% respectively and samples are taken after 7.5, 15, 30, 60, 120 revolutions. Typical results are shown in Fig. 5, which shows the RSD vs. number of blender revolutions. As expected for non-agglomerating materials, the curves show a rapidly decaying region. The slope of the curves in this region, in semi-logarithmic coordinates, is used to define the mixing rate. The curves then level off to a plateau that indicates the maximum degree of homogeneity that is achievable in the blender for a give material. Fig. 5.Fig. 5. Mixing curves for different fill levels in blender 2. The RSD of acetaminophen is plotted as a function of number of revolutions. The loading pattern in top-bottom and the blender rotational speed is 15 rpm with spinning speed of 7.5 rpm.Similar to previous studies with other tumbling blenders we observe that blending performance is adversely affected by increasing fill levels. As shown in Fig. 5, the curve for 80% fill performs more poorly than those for 60% and 70% fill; as fill level increases, RSD curves decay more slowly, signifying a slower mixing process. However, the effect is not as pronounced as in other bin blenders and after about only 100 revolutions, the same plateau (the same asymptotic blend homogeneity) is achieved for all three fill levels.Next, the effect of rotational speed is investigated in the blender 1 with one axis of rotation and is compared to the blender 2 with dual rotation axis. Experiments were conducted for both blenders with top-bottom and side-side loading. Experiments were performed at 60% fill level and the rotation speeds considered for blender 1 are 15 rpm, 20 rpm and 25 rpm respectively. As shown in Fig. 6 and Fig. 7, when plotted as a function of blender revolutions, there is not much of an effect of rotation speed 55on the homogeneity index (RSD) of acetaminophen at 60% fill level. It is observed that mixing performance at 20 rpm and 25 rpm is slightly better than at 15 rpm, however the differences in the performance of the blender under different speeds are probably too small to be significant. RSD curves decay with the same slope, indicating similar mixing rates. In the study reported here, the fill level is only 60%, and all the rotational speeds are enough to achieve homogenization. The aforementioned studies were conducted at 85% fill level. For such a high fill level, at low speeds, a stagnant core is known to occur at the center of many blenders, requiring higher shear stress per unit volume to achieve homogenization. Moreover, the flow properties of MgSt are known to be strongly different than those of most materials, and are known to have a deep impact on the flow properties of the mixture as a whole. Furthermore, MgSt is famously known to be a shear sensitive material. Thus an expectation that lubricated and unlubricated blends would show similar behavior with respect to shear is probably unwarranted. Fig. 6.Fig. 6. Mixing curves for top-bottom loading experiments with 60% fill level. RSD is plotted as a function of number of revolutions. Dotted lines correspond to experiments in the blender 1, while solid lines represent data points from the blender 2. Fig. 7.56Fig. 7. curves for sideside loading experiments with 60% fill level. RSD is plotted as a function of number of revolutions. Dotted lines correspond to experiments in the while solid lines represent data points from the 2.Subsequently, experiments were performed using the blender 2 at three rotation speeds: 15 rpm, 20 rpm and 30 rpm, and as explained before, the corresponding spinning speeds were 7.5 rpm, 10 rpm and 15 rpm. Fill level considered for both side-side and top-bottom loading was 60%.Again, it was observed that varying rotation and spinning speeds did not make much difference in mixing rate. As shown in Fig. 6 and Fig. 7, mixing curves for blender 2 vary only slightly with rotation speed. For the top-bottom loading pattern it appears that mixing improves slightly when rotation speed is increased (the plateau is slightly lower for higher rotation speeds, indicating an improvement in the levels of asymptotic homogeneity), but no significant changes with speed are observed in side-side loading pattern.The blending performance of both blenders is compared at different rotation speeds for both side-side and top-bottom loading patterns. To make a fair comparison, the fill level was kept as 60% for both blenders, a condition for which both blenders achieve effective mixing at long enough times. Due to geometric similarity of the two blenders, this comparison help evaluate the effect of spin (rotation with respect to the central symmetry axis) on mixing performance. As shown in Fig. 6, the mixing curves for the blender 2 lie below those for the blender 1 for each rotation rate, indicating faster mixing. Note that the final RSD asymptote reached for both blenders is also different, with the blender 2 showing a lower asymptote (better final mixed state, presumably due to a lesser effect of the slow mixing mode in the horizontal direction) than blender 1.Similar results were obtained for the side-side loading pattern, as displayed in Fig. 7. The RSD curves for the blender 1 for all the three rotation rates lie above the blender 2. It is therefore confirmed that spinning a blender in direction perpendicular to the rotation axis helps in enhancing mixture homogeneity; however, for the materials examined here, the rotation rate does not have much effect on mixing performance. Finally, a comparison is made between the two loading patterns for both blenders. Again, to achieve a fair comparison, all experiments are 57performed at 15 rpm and 60% fill level. As evident in Fig. 8, in both blenders topbottom loading gives a more rapid decay of the RSD, indicating faster homogenization as compared to sideside loading pattern. However, for both loading modes, blender 2 achieves faster homogenization. Fig. 8.Fig. 8. Comparison between the mixing curves of the blender 2 and the blender 1 for topbottom and sideside loading pattern. Dotted lines correspond to experiments in the blender 1, while solid lines represent data points from the blender 2. Experiments are performed at 15 rpm with 60% fill level.As reported in previous studies, all the RSD curves in this paper exhibit a common trend with respect to time, characterized by an initial period of rapid homogenization due to convective mixing, followed by a period of much slower homogenization typically controlled by dispersion or shear. This trend is shown schematically in Fig. 9. The first regime is a fast exponential decay and the second one is a slow exponential asymptote to a limiting plateau. The first part represents a rapid reduction in heterogeneity driven by the bulk flow (convection); the slope of the RSD curve, in semi-logarithmic coordinates, is the convective mixing rate. The second part is driven by individual particle motion (dispersion) or by the slow erosion of API agglomerates due to shear. Fig. 9.58Fig. 9. A typical mixing plot, with RSD plotted against number of revolutions. The two solid lines emphasize on the two distinctive mixing regimes.When only one mixing mechanism is present (a situation that can be achieved by careful control of the initial loading pattern), a simple mass-transfer model, represented in Eq. (1) can be used, as in past studies 14, to capture the evolution of the RSD in powder systems. In this model, an exponential curve decaying towards a plateau is fitted to the mixing curves, where is the standard deviation, the final standard deviation, A is an integration constant, signifies the mixing rate constant, and N is the number of revolutions. This model predicts that the experimental variance will decay exponentially with time as it approaches the random mixture state. In order to characterize numerically the “ mixing rate,” has to be computed for each blending experiment.)=AeNThe values for parameters A and are calculated by minimizing the sum of squares of errors between the data and an exponential function. The value of final standard deviation () is taken as the lowest value of the variance achieved in the mixing studies. The values for are computed for blending experiments with different percentage fill, and loading pattern and the results are plotted in Fig. 10 and Fig. 11. As shown in Fig. 10, the mixing rate constant decreases with increase in percentage fill level. A broader comparison with two other bin blenders is provided in Fig. 11, which displays the mixing rate for the blender 2, for the blender 1 with and without baffles, and for a commercially available rectangular blender. The figure also illustrates the effect of loading pattern on these four bin blenders, all of them rotated at 20 rpm. It is evident that blender 2 with dual axis of rotation has the highest mixing rate constant of the entire group. For all blenders used in this study, there is also an effect of loading pattern on mixing; it was found that topbottom loading pattern gives better mixing performance than side-side loading.59 Fig. 10Fig. 10. Mixing performance was evaluated at three different fill levels for blender 2. Experiments were performed at 60%, 70% and 80% fill levels at 15 rpm with topbottom loading. Mixing rate constant () values is plotted as a function of fill level and found to increase with decrease in fill level. Fig. 11 Fig. 11. Mixing performance of bin blenders along with loading pattern are compared at 20 rpm with 60% fill level. Mixing rate constant () values plotted for different loading patterns in bin blenders with and without baffle and as shown above, blender 2 givers a better mixing performance as compared to blender 1. There is also a pronounced effect of loading pattern, and regardless of the blender used, topbottom loading always gives a better performance compared to sideside.4. ConclusionThe effects of fill level, mixing time, loading pattern and axis of rotation on the mixing performance of a free-flowing matrix of Fast Flo lactose and Avicel 102, containing a moderately cohesive API, micronized Acetaminophen was examined. Blending performance was found to be adversely affected at increasing fill levels. Topbottom loading pattern was shown to lead to better mixing performance than side-side loading 60pattern. It was also confirmed that spinning a blender in direction perpendicular to the rotation axis helps in enhancing mixture homogeneity. A mathematical mixing model was utilized to compare mixing rates at different fill levels, blender types and loading pattern. It was shown that mixing rates were enhanced at low fill levels, top-bottom loading patterns, and for blender with dual axis of rotation.References1 B.H. Kaye, Powder Mixing: Chapman & Hall.2 K. Sommer, Statistics of mixedness with unequal particle sizes, Journal of Powder and Bulk Technology 3 (4) (1979), pp. 1014. View Record in Scopus | Cited By in Scopus (1)3 Fernando J. Muzzio, Troy Shinbrot and Benjamin J. Glasser, Powder technology in the pharmaceutical industry: the need to catch up fast, Powder Technology 124 (2002), pp. 17. Article | PDF (277 K) | View Record in Scopus | Cited By in Scopus (39)4 C. Denis et al., A model of surface renewal with application to the coating of pharmaceutical tablets in rotary drums, Powder Technology 130 (2003), pp. 174180. Article | PDF (216 K) | View Record in Scopus | Cited By in Scopus (17)5 G.R. Woodle and J.M. Munro, Particle motion and mixing in a rotary kiln, Powder Technology 76 (1997), pp. 241247.6 P.J.T. Mills et al., The effect of binder viscosity on particle agglomeration in a low shear mixer/agglomerator, Powder Technology 113 (2000), pp. 140147. Article | PDF (529 K) | View Record in Scopus | Cited By in Scopus (32)7 R.J. Spurling, J.F. Davidson and D.M. Scott, The no-flow problem for granular material in rotating kilns and dish granulators, Chemical Engineering Science 55 (2000), pp. 23032313. Article | PDF (459 K) | View Record in Scopus | Cited By in Scopus (13)8 R. Turton and X.X. Cheng, The scale-up of spray coating processes for granular solids and tablets, Powder Technology 150 (2005), pp. 7885. Article | PDF (360 K) | View Record in Scopus | Cited By in Scopus (17)9 D.V. Khakhar et al., Transverse flow and mixing of granular materials in a rotating cylinder, Physics of Fluids 9 (1997), pp. 3143. OJPS full text | Full Text via CrossRef | View Record in Scopus | Cited By 61in Scopus (123)10 D.V. Khakkar, J.J. McCarthy and J.M. Ottino, Radial segregation of granular mixtures in rotating cylinders, Physics of Fluids 9 (12) (1997), pp. 36003614.11 P.E. Arratia, Nhat-hang Duong, F.J. Muzzio, P. Godbole, A. Lange and S. Reynolds, Characterizing mixing and lubrication in the Bohle Bin blender, Powder Technology 161 (2006), pp. 202208. Article | PDF (486 K) | View Record in Scopus | Cited By in Scopus (17)12 Albert Alexander, Troy Shinbrot, Barbara Johnson and Fernando J. Muzzio, V- blender segregation patterns for free-flowing materials: effects of blender capacity and fill level, International Journal of Pharmaceutics 269 (2004), pp. 1928. Abstract | Article | PDF (290 K) | View Record in Scopus | Cited By in Scopus (13)13 Osama S. Sudah, D. Coffin-Beach and F.J. Muzzio, Quantitative characterization of mixing of free-flowing granular material in tote ( bin)-blenders, Powder Technology 126 (2002), pp. 191200. Article | PDF (432 K) | View Record in Scopus | Cited By in Scopus (29)14 P.E. Arraita, Nhat-hang Duong, F.J. Muzzio, P. Godbole and S. Reynolds, A study of the mixing and segregation mechanisms in the Bohle Tote blender via DEM simulations, Powder Technology 164 (2006), pp. 5057.中文翻译:中文翻译:搅拌性能比较单轴和双轴搅拌机搅拌性能比较单轴和双轴搅拌机阿米特 Mehrotra 和费尔南多 j 的 Muzzio化工系与生化工程,罗格斯大学,皮斯卡塔韦,新泽西州,08855,美国收到 2009 年 2 月 17 日;修订 09 年 5 月 30 日;接受 09 年 6 月 14 日。62可在线 2009 年 6 月 27 日。摘要摘要所涉及的粉末混合动力仍然是许多研究者感兴趣的话题,但是仍然落后的理论。该混频器大多仍设计,规模化的实证基础上。在许多行业,包括医药,大多数的混合是使用“翻滚混频器“。滚筒搅拌机是部分加载的材料和一些圈数旋转中空容器。一些常见的例子包括水平滚筒搅拌机,V 型混合机,双锥混合机和 bin 搅拌机。在所有这些混频器而在同质化是快速旋转方向,由对流混合过程介导的,在水平(轴向)方向色散过程驱动,混合,往往是慢得多。在本论文中,我们探讨一种新的翻滚实验搅拌机,关于两个轴旋转:一个(翻滚动作)水平轴,中心对称轴(旋转运动) 。进行详细研究的粉末混合性能和关键参数的影响,包括搅拌器的基本几何形状,速度,补平,挡板的存在,加载模式和旋转轴。在这项工作中对乙酰氨基酚用作活性药物成分和配方包含如常用 Avicel 和乳糖辅料。混合效率的特点,通过提取后,预先确定样品的转数来分析和近红外光谱技术,以确定成分的分布。结果显示过程变量包括粉末混合均匀性的旋转轴的重要性。图形抽象所涉及的粉末混合动力仍然是许多研究者感兴趣的话题,但是仍然落后的理论。该混频器大多仍设计,规模化的实证基础上。在许多行业,包括医药,大多数的混合是使用“翻滚混频器“。在所有这些混频器而在同质化是快速旋转方向,由对流混合过程介导的,在水平(轴向)方向色散过程驱动,混合,往往是慢得多。在本论文中,我们探讨一种新的翻滚实验搅拌机,关于两个轴旋转:一个(翻滚动作)水平轴,中心对称轴(旋转运动) 。63关键词:粉末混合;凝聚力;搅拌机,混合机,相对标准偏差;近红外;对乙酰氨基酚文章概要文章概要1.简介2.材料和方法2.1.近红外光谱2.2.滨本研究使用搅拌器:单轴搅拌机(果汁机 1) ,双向轴向搅拌机(搅拌机 2)2.3.实验方法3.结果644.结论参考文献1.1.简介简介粒子混合是在多种应用的必要步骤,横跨陶瓷,食品,玻璃,冶金,聚合物,医药等行业。尽管历史悠久,混合干燥固体(或因为它可能)比较小,是已知的机制,涉及1,2和3。阿批工业搅拌机常见的类型是翻滚的搅拌机,其中谷物由重力和旋转组合船只流量。虽然翻滚搅拌这些设备是在一个非常常见的设备,混合和分离的机制尚未完全了解,对于混合设备的设计主要是实证方法的基础。玻璃杯是最常见的一批工业搅拌机,并在应用中找到无数用烘干机,窑炉,镀膜机,研磨机和粉碎机4 5 6 7 8。虽然在旋转鼓自由流动的材料已被广泛地研究这些系统9和10,凝聚力颗粒流仍然没有完全理解。知之甚少的基本几何参数,如搅拌机,速度的影响,补平,65在场的挡板,装上的凝聚力粉末或设备的比例要求,混合性能模式和旋转轴。然而,传统的酒杯,围绕水平轴旋转,都有一个重要的特点:而在同质化是快速旋转方向,由对流混合过程介导的,在水平(轴向)方向色散过程驱动,混合,是往往慢得多。在本论文中,我们探讨一种新的翻滚实验搅拌机,关于两个轴旋转:一个(翻滚动作)水平轴,中心对称轴(旋转运动) 。我们研究的填充水平的影响,搅拌时间,装上了一个快速弗洛乳糖自由流动矩阵和Avicel 102 混合性能模式和旋转轴,含中等凝聚力的 API,微粉扑热息痛。我们使用广泛的特点,通过跟踪取样对乙酰氨基酚的同质性进化利用近红外光谱检测方法搅拌。材料和方法后,在第 2 部分所述,结果显示在第 3,结论和建议,这些建议随后在第四节的。2.2.材料和方法材料和方法在研究中所用的材料列于表 1,以及它们的大小和形态。对乙酰氨基酚是常用的辅料混合,并作为示踪剂来评价作为一种转数实现的功能同质化程度。对乙酰氨基酚是最广泛的混合研究使用的药物之一,Avicel 和乳糖常用药用辅料。在简洁利益的扫描电镜图像不包括在本文件,但可以在“药用辅料手册”中找到2.12.1 近红外光谱近红外光谱对乙酰氨基酚同质性量化使用近红外光谱。校准曲线构建了一个含有粉末混合物(平均)35avicel102 PH 值,62和 3乳糖对乙酰氨基酚。近红外(NIR)光谱技术可以成为一个有用的工具来描述对乙酰氨基酚。样品准备通过保留 Avicel 乳糖的比例随机为了尽量减少辅料的混合效果不完善在对实际实验结果的准确性。内容分析仪器的66快速近红外系统由开放源码软件(银春,MD)和 Vision 软件(版本2.1)制造的用于分析。制备出的样品重量为单独的光闪烁瓶 1 克的混合物;(金布尔玻璃公司瓦恩兰,新泽西州)使用具有精度为0.01 毫克平衡。近红外光谱范围内收集 1116 年至 2482 年,在反射模式纳米扫描。偏最小二乘(PLS)回归校正模型用于开发采用二阶导数的数学预处理,以减少颗粒尺寸效应。如图所示。 1,优良的协议是实现之间的校准和预测值。图.1图.1 近红外(NIR)光谱验证曲线。对乙酰氨基酚的浓度来预测方程式测试验证了对乙酰氨基酚的浓度与已知金额样本。 y 轴表示从公式计算浓度和 X 轴代表实际浓度。因此,一个完美的 45 度直线将代表最佳校正模型。图上的每个点代表一个样本。对乙酰氨基酚的浓度在这里检查范围从 0 到 8。.滨本研究使用搅拌器:单轴搅拌机(果汁机滨本研究使用搅拌器:单轴搅拌机(果汁机 1 1) ,双向轴向搅拌机(搅拌机双向轴向搅拌机(搅拌机 2 2)由于它的广泛使用,圆柱搅拌机有 30 升水容量的 1 为一个学习参考搅拌机。如图所示。 2,该搅拌器具有圆形横截面的底部和蜡烛。它可用于有或无挡板,这是一个可移动的盖子上。在这项研究中所有的实验进行的,没有使用的挡板。在这
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。