(完整word版)高一数学必修五解三角形基本知识点及练习_第1页
(完整word版)高一数学必修五解三角形基本知识点及练习_第2页
(完整word版)高一数学必修五解三角形基本知识点及练习_第3页
(完整word版)高一数学必修五解三角形基本知识点及练习_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 解三角形一、知识点复习1、正弦定理及其变形abc=sin a sin b sin c= 2r (r为三角形外接圆半径)(1)a = 2rsin a,b = 2rsin b,c = 2rsinc 边化角公式)(abc(2)sin a =,sin b =,sin c =(角化边公式)2r2r2r(3)a :b :c = sin a:sin b :sin ca sin a a sin a b sin b(4) =, =, =b sin b c sinc c sinc3、余弦定理及其推论b + c - a22222cos a =cos b =cosc =2bca = b + c - 2bccos a

2、222a + c -b22b = a + c - 2accos b2222acc = a + b - 2abcosc222a + b - c222ab5、常用的三角形面积公式1(1) s(2) s= 底高 ;dabcdabc2111= absinc = bcsin a = casin b (两边夹一角);2226、三角形中常用结论(1) a + b c,b + c a,a + c b(即两边之和大于第三边,两边之差小于第三边)(2)在dabc中,a b a b sin a sin b(即大边对大角,大角对大边)(3 )在 abc 中,a+b+c=,所以 sin(a+b)=sinc;cos(a+

3、b)=cosc;a + bc= cos , cos2a + bctan(a+b)=tanc。sin= sin222 二、典型例题(1)用正、余弦定理解三角形dabc中,c = 10, a = 45 ,c = 30 ,求a,b和b例 1、已知在00dabc中,c = 6, a = 45 ,a = 2,求b和b,c练习:0(2)三角形解的个数1、知道 3 边、3 角,2 角 1 边,2 边及其夹角时不会出现两解,2、两边及一边的对角时:a 为锐角a 为钝角或直角图形关系absinaa=bsinabsinaababab解无解一解两解例 1:在 dabc 中,分别根据下列条件解三角形,其中有两解的是【

4、 】a、a = 7,b =14, a = 30 ;c、b = 4 ,c = 5, b = 30;(3) 面积问题b、b = 25 ,c = 30 ,c = 150 ;d、 a = 6 ,b = 3 , b = 60 。例 4 dabc 的一个内角为 120,并且三边构成公差为 4 的等差数列,则 dabc的面积为11、在abc 中,若 s=(a +b c ),那么角c=_2 2 2abc4 2、abc 中,a: b =1: 2,c 的平分线cd 把三角形面积分成3: 2 两部分,则cos a =pp3、dabc 的内角a, b,c 的对边分别为a,b,c ,已知b = 2 ,b=,c=,则da

5、bc 的64面积为()+ 23 +12 3 - 23 -1d.a. 2 3b.c.4、在abc 中,a=60, c:b=8:5,内切圆的面积为 12,则外接圆的半径为_.5、若abc 的周长等于20,面积是10 3 ,a60,则 bc 边的长是(a5 b6 c7 d8)(4)边角互化思想:1、判断三角形形状例5 在dabc 中,已知(a + b )sin(a - b) = (a - b )sin(a + b),判断该三角形2222的形状。练习:1、设abc的内角a, b, c所对的边分别为a, b, c, 若bcosc + ccosb = asin a , 则abc的形状为 ()a. 直角三角

6、形 b. 锐角三角形 c. 钝角三角形 d. 不确定abc 的三个内角满足sin a:sin b :sin c = 5:11:13 ,则abc2、若(a)一定是锐角三角形.(b)一定是直角三角形.(c)一定是钝角三角形.(d)可能是锐角三角形,也可能是钝角三角形.2、与向量的联系例:在abc 中,ab5,bc7,ac8,则ab bc 的值为( )a79 b69c5 d-5 3、大题练习:p例:在abc中,内角a,b,c 对边的边长分别是a,b,cc = 2 c =,已知 ,3()若abc的面积等于 3 ,求a,b;= 2sin a ,求abc()若sin b的面积练习:531、在abc中,cos a = -cos b =,135()求sin c 的值;= 5 ,求abc()设 bc的面积+ c = a + 3bc2、设abc 的内角 a,b,c 的对边分别为 a,b,c.已知b2()a 的大小;,求:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论