说明书.doc

长垫片落料冲孔冲压模设计-复合模具【三维PROE】

收藏

资源目录
跳过导航链接。
长垫片落料冲孔冲压模设计-复合模具三维PROE.zip
长垫片落料冲孔冲压模设计-复合模具【三维PROE】【含CAD图纸】
说明书.doc---(点击预览)
装配图.png---(点击预览)
目录.png---(点击预览)
工件图.png---(点击预览)
外文翻译.pdf---(点击预览)
外文翻译.docx---(点击预览)
垫片模具设计图纸汇总.dwg---(点击预览)
CAD图纸汇总.png---(点击预览)
3D
三维 (2).png---(点击预览)
三维 (1).png---(点击预览)
1工件图.png---(点击预览)
14___________.prt.1
a20_________-70512.prt.1
a20_________-70519.prt.1
asm0001.asm.1
asm0001.asm.2
m8x30_________.prt.1
none-12840.prt.1
none-73849.prt.1
product_70991_____.asm.1
product_70991_____.asm.2
product_71040_____.prt.1
product_71069_____.prt.1
product_71126_____.prt.1
product_71176_____.prt.1
product_71189_____.prt.1
product_71223_____.prt.1
_____default_____.prt.1
_______8x30________b8_____.prt.1
_______default_____-70022.prt.1
_______default_____-70164.prt.1
_______default_____-70368.asm.1
_______default_____-70432.prt.1
_______default_____-70440.prt.1
_________8x65_____.prt.1
___________20 x25_5x64_____.prt.1
___________a50 x100_____.prt.1
________________gb70-85_____.prt.1
压缩包内文档预览:(预览前20页/共21页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:130590911    类型:共享资源    大小:8.27MB    格式:ZIP    上传时间:2021-05-29 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
垫片 冲孔 冲压 设计 复合 模具 三维 PROE
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
1 冲压变形冲压变形 冲压变形工艺可完成多种工序,其基本工序可分为分离工序和变形工序两大类。 分离工序是使坯料的一部分与另一部分相互分离的工艺方法, 主要有落料、冲孔、切边、剖切、修整等。其中有以冲孔、落料应用最广。变形工序是使坯料的一部分相对另一部分产生位移而不破裂的工艺方法,主要有拉深、弯曲、局部成形、胀形、翻边、缩径、校形、旋压等。 从本质上看,冲压成形就是毛坯的变形区在外力的作用下产生相应的塑性变形,所以变形区的应力状态和变形性质是决定冲压成形性质的基本因素。因此,根据变形区应力状态和变形特点进行的冲压成形分类,可以把成形性质相同的成形方法概括成同一个类型并进行系统化的研究。 绝大多数冲压成形时毛坯变形区均处于平面应力状态。通常认为在板材表面上不受外力的作用,即使有外力作用,其数值也是较小的,所以可以认为垂直于板面方向的应力为零,使板材毛坯产生塑性变形的是作用于板面方向上相互垂直的两个主应力。由于板厚较小,通常都近似地认为这两个主应力在厚度方向上是均匀分布的。基于这样的分析,可以把各种形式冲压成形中的毛坯变形区的受力状态与变形特点,在平面应力的应力坐标系中(冲压应力图)与相应的两向应变坐标系中(冲压应变图)以应力与应变坐标决定的位置来表示。也就是说,冲压应力图与冲压应变图中的不同位置都代表着不同的受力情况与变形特点 (1)冲压毛坯变形区受两向拉应力作用时, 可以分为两种情况: 即 0t=0和 0,t=0。再这两种情况下,绝对值最大的应力都是拉应力。以下对这两种情况进行分析。 1)当0且t=0时, 安全量理论可以写出如下应力与应变的关系式: (1-1) /(-m)=/(-m)=t/(t -m)=k 式中 ,t分别是轴对称冲压成形时的径向主应变、切向主应变和厚度方向上的主应变; ,t分别是轴对称冲压成形时的径向主应力、切向主应力和厚度方向上的主应力; m平均应力,m=(+t)/3; k常数。在平面应力状态,式(11)具有如下形式: 3/(2-)=3/(2-t)=3t/-(t+)=k (12) 因为0,所以必定有 2-0 与0。这个结果表明:在两向 2 拉应力的平面应力状态时, 如果绝对值最大拉应力是, 则在这个方向上的主应变一定是正应变,即是伸长变形。 又因为0,所以必定有-(t+)0 与t2时,0;当 0。 的变化范围是 =0 。在双向等拉力状态时,= ,有式(12)得 =0 及 t 0 且t=0 时,有式(12)可知:因为 0,所以 1)定有 2 0 与0。这个结果表明:对于两向拉应力的平面应力状态,当的绝对值最大时,则在这个方向上的应变一定时正的,即一定是伸长变形。 又因为0,所以必定有-(t+)0 与t,0;当 0。 的变化范围是 = =0 。当= 时,=0,也就是在双向等拉力状态下,在两个拉应力方向上产生数值相同的伸长变形;在受单向拉应力状态时,当=0 时,=- /2,也就是说,在受单向拉应力状态下其变形性质与一般的简单拉伸是完全一样的。 这种变形与受力情况,处于冲压应变图中的 AOC 范围内(见图 11) ;而在冲压应力图中则处于 AOH 范围内(见图 12) 。 上述两种冲压情况,仅在最大应力的方向上不同,而两个应力的性质以及它们引起的变形都是一样的。因此,对于各向同性的均质材料,这两种变形是完全相同的。 (1)冲压毛坯变形区受两向压应力的作用,这种变形也分两种情况分析,即 t=0 和 0,t=0。 1)当0 且t=0 时,有式(12)可知:因为0,一定有2-0 与0。这个结果表明:在两向压应力的平面应力状态时,如果 3 绝对值最大拉应力是0,则在这个方向上的主应变一定是负应变,即是压缩变形。 又因为0 与t0,即在板料厚度方向上的应变是正的,板料增厚。 在方向上的变形取决于与的数值: 当=2时, =0; 当2时,0;当 0。 这时 的变化范围是 与 0 之间 。当=时,是双向等压力状态时,故有 =0;当=0 时,是受单向压应力状态,所以=-/2。这种变形情况处于冲压应变图中的 EOG 范围内(见图 11) ;而在冲压应力图中则处于 COD 范围内(见图 12) 。 2) 当 0 且t=0 时,有式(12)可知:因为 0,所以一定有 2 0 与0。这个结果表明:对于两向压应力的平面应力状态,如果绝对值最大是,则在这个方向上的应变一定时负的,即一定是压缩变形。 又因为0 与t0,即在板料厚度方向上的应变是正的,即为压缩变形,板厚增大。 在方向上的变形取决于与的数值: 当=2时, =0; 当2,0;当 0。 这时,的数值只能在= =0 之间变化。当= 时,是双向等压力状态,所以=0。这种变形与受力情况,处于冲压应变图中的 GOL 范围内(见图 11) ;而在冲压应力图中则处于 DOE 范围内(见图 12) 。 (1)冲压毛坯变形区受两个异号应力的作用,而且拉应力的绝对值大于压应力的绝对 值。这种变形共有两种情况,分别作如下分析。 1)当0,|时,由式(12)可知:因为0,|,所以一定有 2-0 及0。这个结果表明:在异号的平面应力状态时,如果绝对值最大应力是拉应力,则在这个绝对值最大的拉应力方向上应变一定是正应变,即是伸长变形。 又因为0,|,所以必定有00,0, |时,由式(12)可知:用与前项相同的方法分析可得0。即在异号应力作用的平面应力状态下,如果绝对值最大应力是拉应力,则在这个方向上的应变是正的,是伸长变形;而在压应力方向上的应变是负的(0, 0, 0,|时,由式(12)可知:因为0,|,所以一定有 2- 0 及0,0,必定有 2- 0,即在拉应力方向上的应变是正的,是伸长变形。 这时的变化范围只能在=-与=0 的范围内 。当=-时,00,0, |时,由式(12)可知:用与前项相同的方法分析可得0, 0, 0,0 AON GOH + + 伸长类 AOC AOH + + 伸长类 双向受压 0,0 EOG COD 压缩类 0,| MON FOG + + 伸长类 | LOM EOF 压缩类 异号应力 0,| COD AOB + + 伸长类 | | DOE BOC 压缩类 7 变形区质量问题的表现形式 变形程度过大引起变形区产生破裂现象 压力作用下失稳起皱 成形极限 1主要取决于板材的塑性,与厚度无关 2可用伸长率及成形极限 DLF 判断 1主要取决于传力区的承载能力 2取决于抗失稳能力 3与板厚有关 变形区板厚的变化 减薄 增厚 提高成形极限的方法 1改善板材塑性 2使变形均匀化, 降低局部变形程度 3工序间热处理 1采用多道工序成形 2改变传力区与变形区的力学关系 3采用防起皱措施 伸 长 类 成 形胀 形拉 深翻 边压 缩 类 成 形压 缩 类 成 形扩 口拉 深胀 形伸 长 类 成 形缩 口缩 口扩口+-+ /4 /4翻 边-+- 图 13 冲压应变图 8 冲压成形极限变形区的成形极限传动区的成形极限伸长类变 形压缩类变 形强 度抗拉与抗压缩失衡能力塑 性抗缩颈能 力变形均化与扩展能力塑 性抗起皱能 力变形力及其 变 化各向异性 值硬化性能变形抗力化学成分组 织变形条件硬化性能应力状态应变梯度硬化性能模具状态力学性能值与 值相对厚度化学成分组 织变形条件 图 13 体系化研究方法举例 9 Categories of stamping forming Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming. Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning. In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and 10 the deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane principal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics. (1)When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows. 2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are: /(-m)=/(-m)=t/(t -m)=k 1.1 where, ,t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; ,and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=(+t)/3; k is a constant. In plane stress state, Equation 1.1 3/(2-)=3/(2-t)=3t/-(t+)=k 1.2 Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs 11 to tensile forming. In addition, because 0,therefore -(t+)0 and t2,0;and when 0. The range of is =0 . In the equibiaxial tensile stress state = ,according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming. Also because0,therefore -(t+)0 and t,0;and when 0. 12 The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile. This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2). Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material. (1)When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0,t=0 and 0,t=0. 1)When 0 and t=0, according to Equation 1.2, 2-0 与 =0.This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is 0, the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the tangential direction depends on the values 13 of and .When =2,=0;when 2,0;and when 0. The range of is 0.When =,it is in equibiaxial tensile stress state, hence=0; when =0,it is in uniaxial tensile stress state, hence =-/2.This kind of deformation condition is in the region EOG of the diagram of the stamping strain (see Fig.1.1), and in the region COD of the diagram of the stamping stress (see Fig.1.2). 2)When 0and t=0, according to Equation 1.2,2- 0 and 0. This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is , the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0; and when 0. The range of is = =0 . When = , it is in equibiaxial tensile stress state, hence =0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2). (3) The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow: 14 1)When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming. Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, by means of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative (=-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0 and 0, therefore 2- 0. The strain in the tensile stress direction is positive, or in the state of tensile forming. The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, 0,0 AON GOH + + Tensile AOC AOH + + Tensile Biaxial compressive stress state 0,0 EOG COD Compressive 0,| MON FOG + + Tensile | LOM EOF Compressive State of stress with opposite signs 0,| COD AOB + + Tensile | | DOE BOC Compressive 20 Table 1.2 Comparison between tensile and compressive forming Item Tensile forming Compressive forming Representation of the quality problem in the deformation zone Fracture in the deformation zone due to excessive deformation Instability wrinkle caused by compressive stress Forming limit 3Mainly depends on the plasticity of the material, and is irrelevant to the thickness 4Can be estimated by extensibility or the forming limit DLF 4Mainly depends on the loading capability in the force transferring zone 5Depends on the anti-instability capability 6Has certain relationship to the blank thickness Variation of the blank thickness in the deformation zone Thinning Thickening Methods to improve forming limit 4Improve the plasticity of the material 5Decrease local 4Adopt multi-pass forming process 5Change the mechanics 21 deformation, and increase deformation uniformity 6Adopt an intermediate heat treatment process relationship between the force transferring and deformation zones 6Adopt anti-wrinkle measures Fig.1.1 Diagram of stamping straintensile formingbulgingdeepdrawingflangingcompressive formingcompressive formingexpandingdeep drawingbulgingtensile formingneckingneckingexpanding+-+ /4 /4flanging-+- Fig.1.2 Diagram of stamping stress 22 TensileformingCompressionformingStrengthCapability ofanti-wrinkleunder the tensileand compressivestressesPlasticityCapability ofanti-neckingDeformationuniformity andextension capabilityPlasticityCapability ofanti-wrinkleDeformationforce and itsAnisotropy value of rHardening characteristicsDeformation resistanceChemistry componentStructureDeformation conditionsHardening characteristicsState of stressGradient of strainHardening characteristicsDie shapeMechanical proertyThe value of the n and rRelative thicknessChemistry componentStructureDeformation conditions Fig.1.3 Examples for systematic research methods 大 学 名称 垫片复合冲压模具的设计 院 系 机电工程系 班 级 姓 名 系主任 教研室主任 指导教师 长垫片复合冲压模具的设计摘要:模具是现代工业的重要工艺设备,随着科学技术的不断进步,它在国民经济中占有越来越重要的地位,发展前景十分广阔。装备制造业在2007年的迅速发展,尤其是汽车和电子电器产品的高速增长,为模具工业的发展营造了良好的市场环境。本次综合实训设计垫片的复合冲压模具,从零件的工艺性分析到模具结构的设计再到工艺计算,一直到最后的模具装配图。关键词:垫片、复合冲压模具、设计目 录引言(绪论)1一、冲裁件的工艺性分析7二、确定冲压工艺方案7三、选择模具结构形式71.模具的形式42.定位装置43.卸料装置44.导向零件45.模架4四、必要的工艺计算81.排样设计与计算42.计算冲压力43.计算模具压力中心44.计算模具刃口尺寸4五、垫片复合模主要零件的设计计算41.落料凹模42.冲孔凸模长度及强度校核43.凸凹模长度确定及壁厚校核44.凸凹模固定板尺寸45.垫板结构与设计46.卸料板的设计47.模座的选择4六、压力机校核41.模柄孔的校核42.模具闭合高度的校核43.压力机工作台尺寸的校核44.冲裁力校核4七、绘制模具总装配图及零件图14课程设计小结24致谢4参考文献25引 言装备制造业在2007年的迅速发展,尤其是汽车和电子电器产品的高速增长,为模具工业的发展营造了良好的市场环境。除了发展速度继续提升外,我国模具行业在2007年还呈现出三大亮点: 一、是模具向大型、精密、复杂方向发展成果突出,如已生产出了单套重量达到100吨的巨型模具及型腔精度达到0.5m的超精模具和能与2500次/分高速冲床相匹配的精密多工位级进模等;模具专业化和标准化程度得到进一步提高,如广东模具企业的模具标准件使用覆盖率大都已达到或超过了80%等;行业结构进一步改善,如产品结构和进出口结构正在不断趋向合理化等,行业正在形成一个以数字化和信息化为主要内容的技术改造热潮,发展后劲充足等。 二、是行业骨干队伍正快速形成,集群式生产方式得到进一步发展,劳动生产率不断提高。模具行业目前已有80多家重点骨干企业,现在,年产模具5000万元以上的企业全行业也有100家左右。骨干队伍正在起着带动行业的作用。继2006年之后,全国的模具城得到了进一步发展。模具城的产出要比上年增长25%以上。模具行业全员劳动生产率比上年有10%以上的提高。 三、是国际合作进一步发展,中国模具正在加速融入世界,因而也为中国模具今后的进一步发展创造了更为有利的条件。无论是出展出访还是来展来访,中国模具行业2007年国际合作方面的活动都要比往年更丰富,参与的企业数和人数更多,成效更加显著。在中国模具工业2007年可喜的发展中也有隐忧。 隐忧之一是生产模具的原材料、人工等成本费用不断上涨,2007年又比上年涨了20%左右,致使模具企业利润空间进一步受挤压,利润率进一步下降,有些企业已出现亏损,显得难以为继。隐忧之二是模具人才,特别是高技能、高水平人才全行业缺乏,这已制约了模具行业的进一步发展。由于总数量的供不应求,高层次人才的正常流动现在已变得有一些不正常了,用人单位的用人成本也显著增加。同时,人才素质也亟待提高。 隐忧之三是在模具行业国内外市场前景良好和现有企业大多利好的情况下,模具行业固定资产投入年复一年不断攀升,尤其是外资和民间投资更为踊跃投入,致使某些领域已呈饱和之势和低水平的重复。大量投资的结果虽然对促进模具工业的发展有好处,但也预示着企业今后的竞争更为剧烈。竞争会不会造成今后的大调整而累及行业发展,这已引起一些业内人士的担忧。目前,在部分领域,尤其在中低档市场上,竞争已造成因相互过度压价而损害产品质量的状况。 隐忧之四是中国模具行业总体创新能力薄弱,综合水平仍比国外先进水平落后许多,这对今后发展非常不利。所谓综合水平的落后包括了技术落后、产品落后、管理落后及人的观念和水平落后等。虽然我国模具行业中也不乏可与世界先进水平相媲美的企业,有些产品也并不比世界先进水平差,但这毕竟只是少数。就大多数而言,我们必须承认落后,而且总体来说,不是落后一点点,而是落后了许多。总体落后的主要表现是我国模具在结构、精度、效能、寿命及生产周期等方面以及从业人员综合素质与水平和全员劳动生产率等方面与国际先进水平相比有着较大差距。此外,当然还存在装备及环境等方面的差距等。 模具设计一、冲裁件的工艺性分析(1)材料 Q235是普通碳素钢,具有良好的冲压性能。(2)工件结构 该零件形状简单。孔边距远大于凸、凹模允许的最小壁厚,故可以考虑采用复合冲压工序。(3)尺寸精度 零件图上尺寸未标注公差,属自由公差,按IT14级确定工件的公差,一般冲压均能满足其尺寸精度要求。二、确定冲压工艺方案该零件(如右图)包括落料、冲孔两个基本工序,可以有以下三种工艺方案:方案一:先落料,后冲孔。采用单工序 模生产。 方案二:落料冲孔复合冲压,采用复 合模生产。方案三:冲孔落料连续冲压,采用级 进模生产。方案一模具结构简单,但需要两道工序两副模具,生产率低,难以满足该零件的年生产需要。方案二只需一副模具,冲压件的形位精度和尺寸精度容易保证,且生产率也高。尽管模具结构较方案一复杂,但由于零件的几何形状简单对称,模具制造并不困难。方案三也只需要一副模具,生产率也高,但模具制造、安装较复合模复杂。通过对上述三种方案的分析比较,该件的冲压生产采用方案二为佳。三、选择模具结构形式(1)模具的形式 此工件有三个孔,若采用正装式复合模,操作很不方便;另外此工件无较高平直度要求,工件要求精度也较低,冲孔废料由冲孔凸模冲入凹模洞口中,积聚到一定数量,由下模漏料孔排出,不必清除废料,操作方便,应用很广,但工作表面平直度较差,凹凸模承受的张力较大。因此凹凸模的壁厚应严格控制,以免强度不足。所以从操作方便、模具制造简单等方面考虑,决定采用倒装式复合模。(2)定位装置 采用挡料销纵向定位,安装在卸料板上,并在凹模板开设让位孔。(3)卸料装置1.条料的卸除 采用弹性卸料板。因为是倒装式复合模,所以卸料板安装在下模。2.工件的卸除 采用打料装置将工件从上模落料凹模中推下,落在模具工作面上。3.冲孔废料的卸除 采用下模座上漏料孔排出。冲孔废料在下模的凹凸模内积聚到一定数量,便从下模座的漏料孔中排出。(4)导向零件 导向零件有许多,如用导板导向则在模具上安装不便,而且阻挡操作者视线,所以不采用;若用钢珠式导柱导套进行导向,则虽然导向精度高,寿命长,但结构比较复杂,所以不采用;针对这次加工的产品精度要求不高,采用滑动式导柱导套进行导向即可。而且模具在压力机上的安装比较简单,操作又方便,还可降低成本。(5)模架 若采用中间导柱模架,则导柱对称分布,受力平衡,滑动平稳,拔模方便,但只能一个方向送料。若采用后侧导柱模架,则可三方向送料。操作者视线不被挡住,结构比较紧凑。本设计决定采用后侧导柱模架。四、必要的工艺计算(1)排样设计与计算1、单直排a、搭边。查冲压模具设计与制造,确定搭边直a、a1t = 2 mm,工件间a1 =2.5 mm。 侧搭边 a = 2mm。b、条料宽度。采用无侧边装置,所以B=(D+2a)= (50+2.5+2.5)= 55mm式中条料宽度的单向偏差,mm,查表得=-0.15mmc、送料步距:S = L + a =30 +2 = 32 mmd、材料利用率利用CAD软件,查得其面积为1163.542mm条料一个步距内的面积为4534=1530 mm=100%=100%=76.04%排样图如下:2、计算冲压力冲裁力公式为P= P+ P式中 P 冲裁力;P 冲孔冲裁力;P落料冲裁力。(1) 冲孔冲裁力P孔。P= Pt式中 L 冲孔周长;t 材料厚度,t=1mm;材料抗拉强度,MPa,查手册,Q235,=375460MPa,取=400MPa。所以 P = Lt=(232+28)1400=35168N(2) 落料冲裁力P落。P= Lt所以 P= Lt=(+264)14 00 =77605.3N(3) 卸料力P。P= K P式中 P卸料力;K卸料系数,查表K=0.040.05,取K=0.04。所以 P= K P=0.0477605.3N=3104.212N(4) 推件力PP = KPn式中 K推料系数,查表取K=0.055; n同时卡在凹模洞孔内的件数,取n=3。所以 P = KP n=0.055351683N=5802.72N(5) 总冲压力P总。冲裁时,压力机的压力值必须大于或等于冲裁各工艺力的总和,即大于总的冲压力。总的冲压力根据模具结构不同计算公式不同,当采用弹压卸料装置和下出件的模具时,总的冲压力为 P =P+ P+ P= P+ P+ P+ P=77605.3+3104.212+35168+5802.72 N=121680.26N122KN初选压力机型号为:JH2325。该压力机的主要参数:公称压力250KN滑块行程75mm最大封闭高度260mm封闭高度调节量55mm工作台尺寸560370模柄孔尺寸40603.计算模具压力中心由于该零件关于中心对称,所以模具的压力中心在几何图形的中心点上。4.计算模具刃口尺寸落料 设工件的尺寸为,根据计算原则,落料以凹模为设计基准。首先确定凹模尺寸,使凹模的基本尺寸接近或等于工件轮廓的最小极限尺寸;将凹模尺寸减去最小合理间隙值即得到凸模尺寸。=()D=(D)=(D)冲孔 设冲孔尺寸为,根据计算原则,冲孔时以凸模为设计基准。首先确定凸模尺寸,使凸模的基准尺寸接近或等于工件孔的最大极限尺寸;将凸模尺寸增大最小合理间隙值即得到凹模尺寸。d=(d+x)d=(d+z)=(d+x+z)孔心距 孔心距属于磨损后基本不变的尺寸。在同一工步中,在工件上冲出孔距为L两个孔时,其凹模型孔中心距可按下式确定。L=L上述式中: 、D 落料凹、凸模尺寸; d、 d 冲孔凸、凹模尺寸; D 落料件的最大极限尺寸; d 冲孔件孔的最小极限尺寸; L、 L 工件孔心距和凹模孔心距的公称尺寸; 工件制造公差; z最小合理间隙; x 磨损系数; 凸或凹模的制造公差,可按IT6IT7级来选取,也可查表选取,或取(),()。为了保证初始间隙不超过Z即+,和选取必须满足以下条件:+外形由落料获得, 16由冲孔同时得到:查表得:Z=0.1mm,Z=0.14mm,则 Z-Z=(0.14-0.1)mm=0.04mm由于尺寸为自由公差,均为IT14级,所以=0.5mm设凸、凹模分别按IT6和IT7级加工制造,则冲16孔:d=(d+)=(16+0.50.43) =16.215mmd=( d+ Z)=(16.215+0.1)=16.315mm校核:+0.011+0.0180.14-0.10.0290.04(满足间隙公差条件)落料D=(D- )=(30-0.50.15) =29.925mmD=( D- Z)=(29.925-0.1)=29.825mm校核:+0.012+0.0080.14-0.10.0020.04(满足间隙公差条件)符合精度要求。五、主要零件的设计计算1.落料凹模1)厚度HH=K式中 K修正系数,查表K=1.25;P落料冲裁力,N,P=77605.3N=78KN。代入 H=1.25=24.7mm 取H=20mm2)长度和宽度L、BL=l+2W式中 W垂直于送料方向的凹模型孔壁间最大距离。 W1.2 H=1.220=24mm所以 L= l+2W=252+12+242=110mmB= B+2W=26+242=74mm取 L=120mmB=70mm由于凹模内要设置推件块,为了使模具加工简单,将凹模分成两块:凹模板和空心垫板,每块板的厚度各为10mm。2.冲孔凸模长度及强度校核1)冲孔凸模长度L.L=H+lH=(0.60.8)HH=Kl= H以上各式中 H凸模固定板厚度;H冲孔凸模厚度;P冲孔冲裁力;K系数;l凸模自由长度;H落料凹模厚度,H=20mm。所以H=K=1=15.2mm,取H=16mmH=(0.6+0.8)H=(0.60.8)16 = 9.612.8mm,取H=10mml= H=20mm所以L= H+l=10+20=30mm2)凸模强度压应力校核校核公式为:式中 P冲孔冲裁力,N,P=7536N,F凸模最小断面积,F=r=3.1433=28.26mm,凸模材料的许用压应力,MPa,材料为Cr12,查手
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:长垫片落料冲孔冲压模设计-复合模具【三维PROE】
链接地址:https://www.renrendoc.com/paper/130590911.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!