第4讲随机数生成及随机变量抽样_第1页
第4讲随机数生成及随机变量抽样_第2页
第4讲随机数生成及随机变量抽样_第3页
第4讲随机数生成及随机变量抽样_第4页
第4讲随机数生成及随机变量抽样_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第4讲随机数生成及随机变量抽样 实验目的实验目的 实验内容实验内容 学习主要的随机变量抽样方法学习主要的随机变量抽样方法 1 1、均匀分布均匀分布U(0,1)的随机数的产生的随机数的产生 2 2、其他各种分布的随机数的产生方法其他各种分布的随机数的产生方法 3 3、随机数生成实例、随机数生成实例 4 4、实验作业、实验作业 随机数的生成及随机变 量抽样 第4讲随机数生成及随机变量抽样 随机数的生成随机数的生成 随机数的产生是实现MC计算的先决条件。 而大多数概率分布的随机数的产生都是基于均 匀分布U(0,1)的随机数。 首先,介绍服从均匀分布U(0,1)的随机数的产 生方法。 其次,介绍服从其

2、他各种分布的随机数的产生 方法。以及服从正态分布的随机数的产生方法。 最后,关于随机数的几点注。 第4讲随机数生成及随机变量抽样 一、一、均匀分布均匀分布U(0,1)的随机数的产生的随机数的产生 产生均匀分布的标准算法在很多高级计算机语 言的书都可以看到。算法简单,容易实现。使用者 可以自己手动编程实现。Matlab 中也提供给我们 用于产生均匀分布的各种函数。我们的重点是怎样 通过均匀分布产生服从其他分布的随机数。因此, 直接使用Matlab提供的可靠安全的标准函数,当然 不用费事了。 第4讲随机数生成及随机变量抽样 IMSL库中的函数使用库中的函数使用 RNSET: 种子的设定 CALL

3、RNSET (ISEED) RNOPT: 产生器的类型的设定 CALL RNOPT (IOPT) RNUN/DRNUN: 产生均匀分布的随机数 CALL RNUN (NR, R) 第4讲随机数生成及随机变量抽样 例例1 1生成生成1 1行行10001000列的列的1 11010上离散均匀分布的随机上离散均匀分布的随机 数;数; 生成生成1 1行行10001000列列21213030上离散均匀分布的随机数;上离散均匀分布的随机数; 生成生成1 1行行10001000列列50150110001000上离散均匀分布的随机上离散均匀分布的随机 数数。 并画经验分布函数曲线。并画经验分布函数曲线。 Ra

4、ndnum=unidrnd(10,1,10000);cdfplot(Randnum); pause Randnum=unidrnd(10,1,10000)+10;cdfplot(Randnum); pause Randnum=unidrnd(500,1,10000)+500; cdfplot(Randnum) cdfplot(x) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 解解:由密度函数知由密度函数知 例例2设总体设总体X的密度函数为的密度函数为 为未知参数 其它 , , 0 , 1 )( )( xe xfX x 其中其中 0, 生成生成 1行行10000列的随机数列的

5、随机数. X具有均值为具有均值为 的指数分布的指数分布 Randnum=exprnd(2,1,10000)+5 5, 2 并画经验分布函数曲线。并画经验分布函数曲线。 cdfplot(Randnum) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 二、其他各种分布的随机数的产生二、其他各种分布的随机数的产生 基本方法有如下三种: 逆变换法 合成法 筛选法 第4讲随机数生成及随机变量抽样 逆变换法逆变换法 设随机变量 的分布函数为 ,定义 定理定理 设随机变量 服从 上的均匀分布, 则 的分布函数为 。 因此,要产生来自 的随机数,只要先产生 来自 的随机数,然后计算 即可。

6、其步骤为 X xF 10 ,:inf 1 yyxFxyF U) 1 , 0( UFX 1 xF xF 1 , 0U uF 1 uFx uU 1 1 , 0 计算 ,抽取由 第4讲随机数生成及随机变量抽样 的随机数生成,min 21n XXXY 00 , 0 1 );( x xe xf x 0为常数 例例3 设密度函数为 并画经验分布函数曲线。并画经验分布函数曲线。 0, 0 0,1 )( 0, 0 0,1 )( y ye yF x xe xF ny Y x X , 第4讲随机数生成及随机变量抽样 的随机数生成,min 21n XXXY 例例4 设X分布函数为F(X) )1 (1 (,)(11)

7、( 1 1 n X Y n XY UFRandyFyF , 0, 0 01, )( x xx xFX nn X Y n Y UUFRand yyF 11 1 )1 (1)1 (1 ( 11)( 生成生成n=20的的1行行10000列随机数,并画经验分布列随机数,并画经验分布 函数曲线。函数曲线。 第4讲随机数生成及随机变量抽样 n=20 Randnum=1-(1-unifrnd(0,1,1,10000).(1/n); cdfplot(Randnum) 第4讲随机数生成及随机变量抽样 的随机数生成X 1n为常数 例例5 设密度函数为 并画经验分布函数曲线。并画经验分布函数曲线。 1,.,0 0,

8、 0 , )( 1 ni x xxxc xf iii X , 其它 第4讲随机数生成及随机变量抽样 合成法合成法 合成法的应用最早见于Butlter 的书中。 构思如下: 如果 的密度函数 难于抽样,而 关于 的条件密度函数 以及 的密度函数 均易于抽样,则 的随机数可如下产生: 可以证明由此得到 的服从 。 X xpXY yxpY yg X xyxp yygY 抽取由条件分布 ,抽取的分布由 X xp 第4讲随机数生成及随机变量抽样 筛选抽样筛选抽样 假设我们要从 抽样,如果可以将 表示 成 ,其中 是一个密度函数且易 于抽样,而 , 是常数,则 的抽样 可如下进行: 定理定理 设 的密度函

9、数 ,且 , 其中 , , 是一个密度函数。令 和 分别服从 和 ,则在 的条件 下, 的条件密度为 xp xgxhcxp xp h 10 xg1cX 。,回到如果 ,停止,则如果 ,抽取,由抽取由 13 2 1 , 01 ygu yxygu yyhuU X xp xgxhcxp h 10 xg1cU Y1 , 0U yh YgU xpYgUxpY Y 第4讲随机数生成及随机变量抽样 三、生成标准正态分布的随机数三、生成标准正态分布的随机数 的随机数产生方法很多。简要介绍三种。 法法1、 变换法(Box 和Muller 1958) 设 , 是独立同分布的 变量,令 则 与 独立,均服从标准正态

10、分布。 法法2、 结合合成法与筛选法。(略) 法法3 3、 近似方法(利用中心极限定理) 即用 个 变量产生一个 变量。 其中 是抽自 的随机数, 可近似为一 个 变量。 1 , 0N 1 U 2 U 1 , 0U 212 211 2sinln2 2cosln2 2 1 2 1 UUX UUX 1 X 2 X n1 , 0U1 , 0N 2112unx i u 1 , 0U n i i u n u 1 1 1 , 0N 第4讲随机数生成及随机变量抽样 例例6 生成单位圆上均匀分布的生成单位圆上均匀分布的1行行10000列随机数,列随机数, 并画经验分布函数曲线。并画经验分布函数曲线。 Rand

11、num=unifrnd(0,2*pi,1,10000); xRandnum=cos(Randnum) Y,II =sort(xRandnum) yRandnum=sin(Randnum) plot(xRandnum(II),yRandnum(II),.) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 例例7 生成单位正方形上均匀分布的生成单位正方形上均匀分布的1行行10000列随列随 机数,并画散点图。机数,并画散点图。 mm=10000;Randnum=unifrnd(0,4,1,mm); xRandnum=zeros(1,mm);yRandnum=zeros(1,mm);

12、 for ii=1:mm if Randnum(1,ii)=1 xRandnum(1,ii)=0; yRandnum(1,ii)=Randnum(1,ii); else if Randnum(1,ii)=2 xRandnum(1,ii)=Randnum(1,ii)-1; yRandnum(1,ii)=1; else if Randnum(1,ii)=3 xRandnum(1,ii)=1; yRandnum(1,ii)=1-(Randnum(1,ii)-2); else xRandnum(1,ii)=1-(Randnum(1,ii)-3); yRandnum(1,ii)=0; end end e

13、nd end Y,JJ =sort(xRandnum);plot(xRandnum(JJ),yRandnum(JJ),.) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 离散型随机变量的生成离散型随机变量的生成 离散型随机变量X,它的取值是非光滑连续的值,它 只能间断地即离散地取值x1,x2,x3,xn,且规定 x1x2x3xn。其概率密度函数为 p(xi)=pX= xi 概率分布函数为 xi x ii xpxXpXF)()( 例例1010 对某车间每天需求某种零件的数量历史数据 中统计获得表1的结果。生成1行1000列零件需求的 随机数。并画经验分布函数曲线。并画经验分布函

14、数曲线。 表1 某零件每天需求量 X 第4讲随机数生成及随机变量抽样 需求量x(件)概率P(x)累积概率F(x)可分配的随机数范围 X1=10 0.10 F(X1)=0.10 ( .00 - .10 X2=20 0.20 F(X2)=0.30 ( .10 - .30 X3=30 0.40 F(X3)=0.70 ( .30 - .70 X4=40 0.25 F(X4)=0.95 ( .70 - .95 X5=50 0.05 F(X5)=1.00 ( .95 1) 随机变量生成的算法为 产生一个u(0,1),并令i=0; 令i=i+1; 若uF(xi),转回到第步,否则转至; 输出得 Xxi。 第

15、4讲随机数生成及随机变量抽样 mm=10000;Randnum=unifrnd(0,1,1,mm);xRandnum=zeros(1,mm); for ii=1:mm if Randnum(1,ii)=0.1 xRandnum(1,ii)=10; else if Randnum(1,ii)=0.3 xRandnum(1,ii)=20; else if Randnum(1,ii)=0.7 xRandnum(1,ii)=30; else if Randnum(1,ii)=0.95 xRandnum(1,ii)=40; else xRandnum(1,ii)=50; end end end end

16、end cdfplot(xRandnum) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 三角分布(a,m,b)的随机变量其密度函数为 bx 1 a)-a)(b-a)/(m-2(x 0 )( 时当 时当 时或当 m mxa bxxa xf bx 1 bx )(/()(1 a)-a)(b-/(ma)-(x 0 )( 2 2 时当 时当 时当 时当 mabmbxb mxa ax xF 其分布函数为 第4讲随机数生成及随机变量抽样 在用Monte Carlo等方法解应用问题时,随机 向量的抽样也是经常用到的. 若随机向量各分量相互独立,则它等价于多个 一元随机变量的抽样。 随机向量

17、的抽样方法 第4讲随机数生成及随机变量抽样 例例8 生成单位正方形内均匀分布的生成单位正方形内均匀分布的1行行10000列随机列随机 数,并画散点图。数,并画散点图。 mm=10000 xRandnum=unifrnd(0,1,1,mm); yRandnum=unifrnd(0,1,1,mm); plot(xRandnum,yRandnum,.) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 mm=100000 xRandnum=unifrnd(0,1,1,mm); yRandnum=unifrnd(0,1,1,mm); Y,JJ =sort(xRandnum) plot(x

18、Randnum(JJ),yRandnum(JJ),.) 第4讲随机数生成及随机变量抽样 例例9 生成单位圆内均匀分布的生成单位圆内均匀分布的1行行10000列随机数,列随机数, 并并画散点图。画散点图。 mm=10000; Randnum1=unifrnd(-1,1,1,2*mm); Randnum2=unifrnd(-1,1,1,2*mm); xRandnum=zeros(1,mm);yRandnum=zeros(1,mm); s=Randnum1.2+Randnum2.2;ii=1;jj=1; while iimm if s(1,jj)=1; xRandnum(1,ii)=Randnum1

19、(1,jj); yRandnum(1,ii)=Randnum2(1,jj); ii=ii+1; end jj=jj+1; end plot(xRandnum,yRandnum,.) 第4讲随机数生成及随机变量抽样 第4讲随机数生成及随机变量抽样 关于随机数的几点注关于随机数的几点注 注注1 1 由于均匀分布的随机数的产生总是采用某个 确定的模型进行的,从理论上讲,总会有周期现 象出现的。初值确定后,所有随机数也随之确定, 并不满足真正随机数的要求。因此通常把由数学 方法产生的随机数成为伪随机数。 注注2 2 应对所产生的伪随机数作各种统计检验, 如独立性检验,分布检验,功率谱检验等等。 但其周

20、期又相当长,在实际应用中几乎不可 能出现。因此,这种由计算机产生的伪随机数可 以当作真正的随机数来处理。 第4讲随机数生成及随机变量抽样 2.设设密度函数为密度函数为 1.1.生成单位球内均匀分布的生成单位球内均匀分布的1 1行行1000010000列随机数,并列随机数,并 画散点图。画散点图。 作业作业: 00 , 0 1 );( x xe xf x 0为常数 的随机数生成,max 21n XXXY 并画经验分布函数曲线。并画经验分布函数曲线。 第4讲随机数生成及随机变量抽样 3.3.生成三角分布生成三角分布(0,1,2)(0,1,2)的的1 1行行1000010000列随机数,并列随机数,

21、并 画散点图。画散点图。 作业作业: 并画经验分布函数曲线。并画经验分布函数曲线。 第4讲随机数生成及随机变量抽样 5.2随机数与随机变量的生成随机数与随机变量的生成 5.2.1随机数的生成随机数的生成 在系统模拟中只要有随机变量,则在模拟运行的每一步中都要对随机变量确 定一个具体的值。我们将会遇到各种概率分布的随机变量,但其中最简单或最 基本的随机变量是在(0, 1)区间上均匀分布的随机变量。服从某一分布的随机 变量都可以通过对(0, 1)均匀分布的随机变量进行适当转换而得到。(0, 1)均 匀分布的随机变量的取值也是在(0,1)区间上均匀分布的随机数ui序列(流)的独 立采样,其密度函数是

22、 (5.1) 0 10 1 )( 其它 时当x xf (5.2) 1 x 1 10 )( 0 )( 时当 时当xx dxxf x xF ui的数学期望和方差分别为 (5.3) 2 1 0 2 2 )( 0 )( 2 x dxxf x uE (5.4) 12 1 )()( 0 )( 2 xEdxxf x xV 第4讲随机数生成及随机变量抽样 因此,若能获得(0,1)均匀分布的随机数,也就能通过对其适当的 转换而获得某一规定分布的随机变量的取值,这就是随机变量的生成。 为此,首先要掌握(0,1)区间上均匀分布随机数的生成方法。 均匀分布随机数必须具备均匀性和独立性的要求;要生成符合上述 要求的随机

23、数流,现在多用数学算法来产生,一般是采用递推算法, 确定一个初始值(种子数)以后,逐次递推算得随机数流。数学算法获 得的随机数、常称之为伪随机数(Pseudo Random Number)序列。 数学方法计算产生的随机数流必须满足下列要求: (1)尽可能在(0,1)区间均匀分布; (2)具有统计上的独立性; (3)产生的随机数流能够重复出现,即给以相同的初值(种子数)能获 得相同的随机数流; (4)有足够长的周期,即在出现周期性重复之前,能生成足够多个的 随机数; (5)算法占用计算机内存较少而计算生成速度较快。 目前广泛应用的算法是线性同余法( Linear congruential Met

24、hod),其 中又分为: 1混合线性同余法。它是由Lehmer于1951年提出的,其算式为 第4讲随机数生成及随机变量抽样 xi+1=(axi+c) mod m ui+1=xi+1/m 式中 a乘数(常数); C增量(常数); x0种子数; m模数。 a,c,m和x0的选取对随机数流的统计特性和周期长度有极大影响。 上述第一式的含义是 (5.6) m )( 1 m cax caxx i ii 式中表示取整数, a,c,m皆为整常数。 2、 乘法线性同余法。若混合线性同余法中c=0,则为乘法线性同余 法,其算式为 x i+1=ax imod m u i+1=xi+1/m (5.7) 第4讲随机数

25、生成及随机变量抽样 可参考选用的数据有: (1) a=16807, m=2147483647, x0=123457; (2) a=655393, m=33554432。 5.2.2随机数流的检验随机数流的检验 一、均匀分布性检验一、均匀分布性检验 1参数检验。检验ui的数字特征,如均值、方差的估计值和其理论值的差 异是否显著。 设有u1, u2,,un随机数流,则它们的 (5.8) 1 1 n i i u n u均值 (5.9) )( 1 1 22 uu n i 方差 若 ui序列在(0,1)上均匀分布,可假设:u的期望和方差分别为 (5.10) 12 1 )( 2 1 )( n uVuE 第4讲随机数生成及随机变量抽样 2的期望和方差分别为 则上列假设(810)与(811)应该成立。据此,可对n个ui计算下列统计量 若取显著性水平a=005, (5.11) 180 1 ) ( 12 1 )( 22 n VE (5.12) ) 2 1 (12 )( )( 1 un uV uEu V (5.13) ) 2 1 (180 ) ( ) ( 2 2 22 2 n V E V 当|V1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论