北师大版初三数学上册【2016年秋备课】九年级数学上册21.1一元二次方程学_第1页
北师大版初三数学上册【2016年秋备课】九年级数学上册21.1一元二次方程学_第2页
北师大版初三数学上册【2016年秋备课】九年级数学上册21.1一元二次方程学_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、21.1 一元二次方程 【学习目标】 1. 一元二次方程的定义、各项系数的辨别,根的作用根的作用的理解. 2. 通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念 【重点、难点】 重点:一元二次方程的概念和它的一般形式。 难点:对一元二次方程的一般形式的正确理解及其各项系数的确定 【学习过程】 一、知识回顾 1 什么是整式方程? 2.什么是一元一次方程? 3. 指出下列方程哪些是一元一次方程? (1) 3x 十 2 = 5x3 2 (2) x = 4 (3) (x 十 3)(3x ?4) = (x 十 2); (4) (x 1)(x 2) = x2十 8;

2、 二、探究新知 (一)建立方程 问题(1)如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周 突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600c m2,那么铁皮各角应切去多大 的正方形? 分析:设切去的正方形的边长为x cm,则盒底的长为 ,宽为 得方程 整理得 问题(2) 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安 排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛? 分析:全部比赛的场数为 设应邀请x个队参赛,每个队要与其他 个队各赛1场,所以全部比赛共 场。列方程 化简整

3、理得 (二)获得定义 观察下列各式: 2 (1) . 3x -5x 2 =0(2). 2 2 2 2x T0 x=3(3) . x 一36 = 0.2x 7x4 = 0 问题一:题目中含有 个未知数? 问题二:按照整式中的多项式的规定,它们最高次数是 次? 类比一元一次方程的定义,那么上面的方程叫做 一元二次方程的定义:方程的两边都是 ,只含有未知数(一元),并且未知数的最高次数是 (二次)的方程叫一元二次方程 一元二次方程的 一般形式:ax 2+bx+c=0 ( 0). 其中ax2是, 是二次项系数;bx是, 是一次项系数; 是常数项 注意:二次项系数、一次项系数、常数项都要包含它前面的符号

4、 二次项系数a = 0是一个重要条件,不能漏掉 强调:一元二次方程的一般形式中的左边最多三项、 其中一次项、常数项可以不出现、 但二次项必须存在、 而且左边通常按x的降幕排列:特别注意的是“=”的右边必须整理成0. 也叫做一元二次 元二次方程的根的定义:使一元二次方程左右两边相等的未知数的值就是一元二次方程的解, 方程的根 三、新知应用 例1将方程3x(x -1) =5(x - 2)化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项. 巩固练习: 把下列方程先化成二元二次方程的一般形式,:说出下列一元二次方程的二次项系数、一次项系数、常数项 (1)6x -2= 3-7x ;

5、(2) 3x(x-1)= 2(x 十 2) 4; (3) 3x25(2x 1)=0 四、课堂小结 1. 通过本节课的学习,你有什么收获? 2. 你还有什么疑问? 五、当堂清 1. 一元二次方程的一般形式是 ,其中是二次项,是一次项,是常数项. 2. 把一元二次方程(x *1)(1 -x) =2x化成二次项系数大于零的一般式是 ,其中二次项系数 是,一次项的系数是 ,常数项是 3. 一元二次方程(m 1)x2 -2mx =1的一个根是3,则m二; 4. 方程:2x2 -丄=12x2 -5xy y07x2 1 = 0-0中一元二次方程是() 3x2 A.和 B. 和 C. 和 D. 和 5. 方程 mX+5x+ n=0 定是(). A. 一元二次方程B.元一次方程 C整式方程 D. 关于x的一元二次方程 6. 关于x的方程(m+1)x2+2mx- 3 = 0是一元二次方程,则 m的取值范围是() A.任意实数 B. m 工1 C. m 1 D. m 0 7. 把下列方程化成一般形式,且指出其二次项,一次项和常数项 (1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x 参考答案: 1. ax 2+ bx +c 2.x2 2x -1 = 0 ,1,2, -1 ;3. 8 3 4. C 5.C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论