版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、曲面的侧 二、第二型曲面积分的概念 三、第二型曲面积分的计算 第二型曲面积分的典 型物理背景是计算流体从 曲面一侧流向另一侧的流 量. 与第二型曲线积分相类 似, 第二型曲面积分与曲 面所取的方向有关, 这就需 要先定义“曲面的侧”. 2 第二型曲面积分 数学分析 第二十二章 曲面积分 *点击以上标题可直接前往对应内容 四、两类曲面积分的联系 数学分析 第二十二章 曲面积分 高等教育出版社 设连通曲面设连通曲面 S 上到处都有连续变动的切平面上到处都有连续变动的切平面 ( 或法或法 线线 ), 定其中一个指向为正方向时定其中一个指向为正方向时, 又又设设 为为 S 上任一点上任一点, L为
2、为 S上上任一经过点任一经过点 且不超出且不超出 S 边界的闭边界的闭曲线曲线. 出发沿出发沿 L 连续移动一周而回到连续移动一周而回到 时时, ,如果有如果有如下特如下特 出发时出发时 M 与与 取相同的法线方向取相同的法线方向, 而回来时仍而回来时仍 保持原来的法线方向不变保持原来的法线方向不变, ,则称该曲面则称该曲面 S 是双侧的是双侧的. 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 曲面的侧 后退 前进 目录 退出 向向. 曲面在其上每一点处的法线有曲面在其上每一点处的法线有两个方向:当取两个方向:当取 另一个另一个指向就是负方指向就是负方 当当 S 上的动点上的动点 M
3、从从 征征: 否则否则, 若若 由某一点由某一点 出发出发, 沿沿 S 上某一封闭曲线上某一封闭曲线 数学分析 第二十二章 曲面积分 高等教育出版社 回到回到 时时, 其法其法线方向与出发时的方向相反线方向与出发时的方向相反, 则称则称 S 是单侧曲面是单侧曲面. 我们通常遇到的曲面大多是双侧曲面我们通常遇到的曲面大多是双侧曲面. 一个典型例子是默比乌斯一个典型例子是默比乌斯(M bius)带带. 法如下法如下: 一端扭转一端扭转 后与另一端粘合在一起后与另一端粘合在一起 重合重合, B 与与 D 重合重合, 如图如图22-4(b)所示所示 ). 2 第二型曲面积分曲面的侧概念计算两类曲面积分
4、的联系 单侧曲面的单侧曲面的 它的构造方它的构造方 取一矩形长纸条取一矩形长纸条ABCD (如图如图22-4(a), 将其将其 ( 即让即让 A 与与 C 数学分析 第二十二章 曲面积分 高等教育出版社 默比乌斯( Mbius,A.F. 17901868, 德 国 ) 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 通常由通常由 所表示的曲面都是双侧曲面所表示的曲面都是双侧曲面, 线方向与线方向与 z 轴正向的夹角成锐角的一侧称为上侧轴正向的夹角成锐角的一侧称为上侧, , 另一侧称为下侧另一侧称为下侧. 的一侧称为外侧,另一侧称为内侧的一侧称为外侧,另一侧称为内侧. . 作为正侧作为正侧
5、, ,下侧作为负侧下侧作为负侧; ; 正侧正侧, , 内侧作为负侧内侧作为负侧. . 其法其法 当当 S 为封闭曲面时为封闭曲面时, ,法线方向朝外法线方向朝外 习惯上把上侧习惯上把上侧 又把封闭曲面的外侧作为又把封闭曲面的外侧作为 数学分析 第二十二章 曲面积分 高等教育出版社 先考察一个计算流量的问题先考察一个计算流量的问题. 设某流体以流速设某流体以流速 从曲面从曲面 S 的负侧流向正侧的负侧流向正侧 ( (图图22-5) ), 所讨论范围上的连续函所讨论范围上的连续函 数数, 曲面曲面 S 的总流量的总流量 E. 设在设在 S 上任一点上任一点 处的正向单位法向量为处的正向单位法向量为
6、 第二型曲面积分的概念 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 其中其中 P, Q, R 为为 求在单位时间内流过求在单位时间内流过 数学分析 第二十二章 曲面积分 高等教育出版社 这里这里 , , 都都是是 x, y, z 的函数的函数. 小曲面块小曲面块 的流量的流量 其中其中 是任意取定的一点是任意取定的一点; 是点是点 处的单位法向量处的单位法向量; 分别是分别是 在坐标面在坐标面 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 则单位时间内流经则单位时间内流经 上投影区域的近似面积上投影区域的近似面积, 分别记作分别记作 数学分析 第二十二章 曲面积分 高等教育出
7、版社 所以所以, 单位时间内由单位时间内由 的负侧流向正侧的总流量的负侧流向正侧的总流量 这种与曲面的侧有关的和式极限就是所要讨论的第这种与曲面的侧有关的和式极限就是所要讨论的第 近似等于近似等于 二型曲面积分二型曲面积分. 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 于是单位时间内由于是单位时间内由 的负侧的负侧流向正侧的流量流向正侧的流量 也就也就 数学分析 第二十二章 曲面积分 高等教育出版社 定义1 的投影区域的面积的投影区域的面积, 分别表示分别表示 在三个坐标面上在三个坐标面上 割割 T , 分割分割 T 的细度的细度为为 设设 P, Q, R 为定义在双侧曲面为定义在双
8、侧曲面 S 上的函数上的函数. 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 对对 S 作分作分 12 , n SSS它把它把 S 分为分为 的方向来确定的方向来确定: 它们的符号由它们的符号由 数学分析 第二十二章 曲面积分 高等教育出版社 定义1 若若 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 在曲面在曲面 所指定所指定一侧上的一侧上的第二型曲面积分第二型曲面积分, 的选取无关的选取无关, 中的三个极限都存在中的三个极限都存在, 的的且与分割且与分割 T 和和点点 则称此极限则称此极限 I 为向量函数为向量函数 记作记作 数学分析 第二十二章 曲面积分 高等教育出版社
9、2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 据此定义据此定义, 某流体以速度某流体以速度 从曲面从曲面 的的 负侧流向正侧的总流量即为负侧流向正侧的总流量即为 又如又如, 若空间中的磁场强度为若空间中的磁场强度为 则按指定方向穿过曲面则按指定方向穿过曲面的磁通量的磁通量(磁力线总数磁力线总数)为为 数学分析 第二十二章 曲面积分 高等教育出版社 若以若以表示曲面表示曲面 S 的另一侧的另一侧, 由定义易知由定义易知 第二型曲面积分有第二型曲面积分有类似于第二型曲线积分的性质类似于第二型曲线积分的性质: 1. 若若 存在存在, 则有则有 2 第二型曲面积分曲面的侧概念计算两类曲面积分的
10、联系 其其 中中 数学分析 第二十二章 曲面积分 高等教育出版社 2. 若曲面若曲面S是由两两无公共内点的曲是由两两无公共内点的曲 面面 所组成所组成, 则有则有 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 数学分析 第二十二章 曲面积分 高等教育出版社 定理22.2 设设 是定义在光滑曲面是定义在光滑曲面 上的连续函数上的连续函数, 向与向与 轴正向成锐角轴正向成锐角), 第二型曲面积分的 计 算 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 以以 S 的上侧为正侧的上侧为正侧( (这时这时 S 的法线方的法线方 则有则有 数学分析 第二十二章 曲面积分 高等教育出版社 由
11、于由于 R 在在 S 上连续上连续, 上连续上连续(曲面光滑曲面光滑), 在在 复复合函数的连续性合函数的连续性, 上也连续上也连续. 由二重积分的定义由二重积分的定义, , 这里这里 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 证证 由第二型曲面积分的定义由第二型曲面积分的定义, 据据 数学分析 第二十二章 曲面积分 高等教育出版社 所以所以 这里这里 S 是取法线方向与是取法线方向与 轴的正向成锐角的那一轴的正向成锐角的那一 类似地类似地, 当当 在光滑曲面在光滑曲面 上连续时上连续时, , 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 有有 侧为正侧侧为正侧. 数学分析
12、 第二十二章 曲面积分 高等教育出版社 侧为正侧侧为正侧. 这里这里 S 是取法线方向与是取法线方向与 轴的正向成锐角的那一轴的正向成锐角的那一 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 上连续时上连续时, 当当 在光滑曲面在光滑曲面 有有 数学分析 第二十二章 曲面积分 高等教育出版社 例例1 计算计算 其中其中 S 是球是球 面面 的外侧的外侧( (图图 22-6) ). 解解 曲面曲面 S 在第一、五卦限部在第一、五卦限部 分的方程分别为分的方程分别为 部分并取球面部分并取球面 在在 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 数学分析 第二十二章 曲面积分 高等教
13、育出版社 它们在它们在 xy 平面上的投影区域都是单位圆在第一象平面上的投影区域都是单位圆在第一象 限限部分部分. 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 的下侧进行的下侧进行, 因积分是沿因积分是沿 故故 数学分析 第二十二章 曲面积分 高等教育出版社 其中其中例例2 计算计算 是由曲面是由曲面 所围立体表面的外侧所围立体表面的外侧. 解解 曲面曲面 其中其中 其投影为其投影为 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 其投影为其投影为 取左侧取左侧, 取右侧取右侧, 取左侧取左侧, 数学分析 第二十二章 曲面积分 高等教育出版社 其投影为其投影为 2 第二型曲面积
14、分曲面的侧概念计算两类曲面积分的联系 (取左侧)(取左侧) (取右侧)(取右侧) 数学分析 第二十二章 曲面积分 高等教育出版社 因此因此 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 (取左侧)(取左侧) 数学分析 第二十二章 曲面积分 高等教育出版社 如果光滑曲面如果光滑曲面 S 由参数方程给出由参数方程给出: 若在若在 D 上各点它们的函数行列式上各点它们的函数行列式 不同时为零不同时为零, 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 则分别有则分别有 数学分析 第二十二章 曲面积分 高等教育出版社 注注 (5),(6),(7) 三式前的正负号分别对应三式前的正负号分别
15、对应 S 的两侧的两侧, 所选定的正所选定的正 特别当特别当 平面的正方向对应于曲面平面的正方向对应于曲面 向一侧时向一侧时, 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 式前取正号式前取正号, 否则取负号否则取负号. 数学分析 第二十二章 曲面积分 高等教育出版社 的上半部分的上半部分, 并取外侧并取外侧. 由由(5)式有式有 解解 把曲面表示为参数方程把曲面表示为参数方程: 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 其中其中 S 为椭球面为椭球面 例例3 计算计算 数学分析 第二十二章 曲面积分 高等教育出版社 其中其中 积分是在积分是在 S 的正侧进行的正侧进行.
16、号号, , 即即 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 由上述的注由上述的注, (8)式右端取正式右端取正 数学分析 第二十二章 曲面积分 高等教育出版社 与曲线积分一样,当曲面的侧确定之后,可以建立与曲线积分一样,当曲面的侧确定之后,可以建立 两种类型曲面积分的联系两种类型曲面积分的联系. 设设 S 为光滑曲面为光滑曲面, 并以上侧为正侧并以上侧为正侧, R 为为 S 上的连续上的连续 函数函数, 曲面积分在曲面积分在 S 的正侧进行的正侧进行. 由曲面面积公式(第二十一章由曲面面积公式(第二十一章6), 两类曲面积分的联系 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联
17、系 因而有因而有 数学分析 第二十二章 曲面积分 高等教育出版社 其中其中 是曲面是曲面 的法线方向与的法线方向与 z 轴正向的交角轴正向的交角, 它它 是定义在是定义在 上的函数上的函数. 所以所以 是锐角是锐角. 使这点的法线方向与使这点的法线方向与 z 轴正向的夹角轴正向的夹角 满足等式满足等式 上连续上连续. 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 或或 于是于是 因为积分沿曲面正侧进行因为积分沿曲面正侧进行, 又由又由 S 是光滑的是光滑的, 所以所以 内必存在一点内必存在一点, 应用中值定理应用中值定理, 在在 数学分析 第二十二章 曲面积分 高等教育出版社 与与 z
18、 轴正向夹角的余弦轴正向夹角的余弦, 现以现以 的法线方向的法线方向 时时, 得当得当 得到得到 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 这里注意当改变曲面的侧向时这里注意当改变曲面的侧向时, 左边积分改变符号左边积分改变符号; 右边积分中角右边积分中角 改为改为 因而因而 也改变符号也改变符号, 所以右边积分也相应改变了符号所以右边积分也相应改变了符号. 的连续性的连续性, 则由则由可推可推 因此由因此由(9)式式 同理可证同理可证: (10)式右端极限存在式右端极限存在. 数学分析 第二十二章 曲面积分 高等教育出版社 其中其中 , 分别是分别是 S 上的法线方向与上的法线方向与 x 轴正向和与轴正向和与 y 2 第二型曲面积分曲面的侧概念计算两类曲面积分的联系 轴正向的夹角轴正向的夹角. 这样这样, 在确定了余弦函数在确定了余弦函数 之后之后, (11), (12),(13),(14) 式便建立了两种不同类型曲面积式便建立了两种不同类型曲面积 分的联系分的联系. 一般地有一般地有 由由 数学分析 第二十二章 曲面积分 高等教育出版社 因此因此 上式避免了同一曲面要向三坐标平面作投影上式避免了同一曲面要向三坐标平面作投影, 从而从而 使计算得到简化使计算得到简化. 时时, , 2 第二型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上饶2025年上饶市部分机关事业单位招聘50名编外聘用人员笔试历年常考点试题专练附带答案详解
- 2026陕西煤业化工集团有限责任公司高校毕业生招聘(3074人)笔试参考题库附带答案详解
- 2026国冶一局集团有限公司(中国冶金地质总局一局)高等院校应届毕业生招聘33人笔试参考题库附带答案详解
- 2025河北雄安软通教育科技有限公司招聘10人笔试参考题库附带答案详解
- 工地烟酒采购合同范本
- 开发服务尾款合同范本
- 2025年内蒙古鄂尔多斯市天安公交集团招聘21人笔试参考题库附带答案详解
- 广告合作定金合同范本
- 委托代理协议要式合同
- 开关地插供应合同范本
- 2024北京朝阳四年级(上)期末数学(教师版)
- 大学采购印刷服务项目 投标方案(技术方案)
- NB-T31007-2011风电场工程勘察设计收费标准
- 2022版科学课程标准解读-面向核心素养的科学教育(课件)
- 上海市静安区2024届高三二模语文试卷(解析版)
- 使用钉钉的方案
- 广西丰联铜业有限公司铜精矿“保税混矿”项目环境影响评价报告表
- DB51-T 5046-2014 混凝土结构工程施工工艺规程
- 厂房矩形控制网测设及柱列轴线与柱基施工测量
- 写作篇 Chapter One Paragragh Writing课件完整版
- WB/T 1019-2002菱镁制品用轻烧氧化镁
评论
0/150
提交评论