




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、淄川中学高2016级高三开学数学(文科)试题一、选择题(本大题共12个小题,每小题5分,满分共60分,每小题只有一个正确答案)1.己知集合 A=x|x2-3x+20, B=x|y=lg (3-x) ,则 AAB=()A. x 1 x2 B. x 11 x3C. x 12x3 D. x | x32.函数f (x) =n(;+i) +4_ x2的定义域为()A. -2, 0) U (0, 2B. ( - 1, 0) U (0, 2C. -2, 2D. ( - 1, 21 1函数f(x) = 22 的大致图象为3.卩()4.已知Qiog 5,匕二 10创3, c=l, d=3-0,6,那么()2A.
2、 acbdB. acdbC. abcdD. adcb5.已知函数Xl若f (f (0)二4a,则实数a等于(C. 2D. 91x=-6参数方程 (/为参数)所表示的曲线是().ABCD7.如图所示是y = fx)的图像,则正确的判断是( /V)在(一3, 1)上是增函数; /= 1是f(“)的极小值点; /*(劝在(2, 4)上是减函数,在(-1, 2)上是增函数; ”=2是fx)的极小值点.A.B.C.D.8.下列函数中,既是偶函数,又在(0, +3C. x| - 3Vx0 或 0VxV3B. x | x3D. x|x - 3 或 0x310.定义在0, + 8)的函歩(兀)的导函数为/(兀
3、),对于任意贰任)舲)则71的大小关系是().C. m 1是丄VI的()an.必要但不充分条件c.充要条件B.充分但不必耍条件D.既不充分也不必要条件12.已知函数f (x)=值范围是(A. (0, y(1 - 2a)x ,logax+y, xlf(Xi) - f ( x2)当xiHx2吋,0对一切xER恒成立,求实数m的取值范围.19. (本小题满分12分)己知函数 f (x) =lnx, g(x) =-(a0),设 F(x) =f (x)+g(x) X(1) 求函数F(x)的单调区间;(2) 若以函数y = F(x) (xe (0, 3)图像上任意一点P(x, y。)为切点的切线的斜率kW
4、*亘成立, 求实数a的取值范围.20. (本小题满分12分)函数g (x) =f (x) +2x, xWR为奇函数.(1) 证明函数f (x)的奇偶性;一(2) 若兀 0时,/(X)= log3 X,求函数g(x)的解析式。21. (本小题满分12分)已知函数 f (x) =ax2 (a + 2) x + lnx.(1) 当a=l时,求曲线y =f(x)在点(1, f (1)处的切线方程;(2) 当a0时,若f(x)在区间1,上的最小值为一2,求a的取值范围.22. (本小题满分12分)在平面直角坐标系屮,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点力的极坐标为(、Q,fj,直线
5、/的极坐标方程为Q cos(一 *)=自,口点力在直线/上.(1)求自的值及直线/的直角坐标方程;(Q为参数),试判断直线/与圆C的位置关系.%=l+cos a , (2)圆C的参数方程为.y=sin a数学(文科)试题答案二、选择题(本大题共12个小题,每小题5分,满分共60分,每小题只有一个正确答案)ABADC. DCDBB. BA.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13. ( - , +00 )14-儲F15. 一寺.16. -2三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)已知抛物线y =
6、ax + bx + c过点(1,1),且在点(2, 1)处与直线y = x 3相切,求3, b, c 的值.【第17题解析】本题涉及了 3个未知量,由题意可列出三个方程即可求解.y= ax + bx+ c il 点(1, 1),/. a+ h+ c=l.又在点(2, 1)处与直线y=x-3相切,:.4ci+2b+c=,r y =2ax+ 方,且 k 1. k= yr I a=2 = 4$+Z?=1,d- 3,联立方程得= 11,2,根据函数的单调性求出m的范围即可.3X+14【解答】解:(I )若f (x)为奇函数,即有f (0)二0,即叶 二0,解得呼2,3U+1经检验f (x)二f (x)
7、, m=2符合题意;4(II )由(I )得:f (x)二2 -,3X+1若不等式f(X)+m0对一切xER恒成立,4即 m -2,3X+14当 X - 8时,-22,3X+1故 m&2.19. (本小题满分12分)已知函数 f (x) =lnx, g(x) =-(a0),设 F(x) =f (x)+g(x).X(1) 求函数F(x)的单调区间;(2) 若以函数y=F(x) (xe (0, 3)图像上任意一点P(xo, yo)为切点的切线的斜率kW*|S成立, 求实数a的取值范闱.【第 19 题解柝】(l)F(x)=./(x)+g(x)=lnx+f(Q0),则-=(x0),a0,由 F(x)0
8、,得 x(a, +oo),F(x)在(a, +ao)上单调递増;由 F(x) 0日寸,/(x) = log3兀,求函数g(兀)的解析式。【考点】奇偶性与单调性的综合.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】(1)函数 g (x) =f (x) +2x (xER)为奇函数,g ( - X)=f ( - x) -2x=-g (x)=f (x)2x,可得f (x)二f (x),即可判断函数f (x)的奇偶性;(2)若x0时,f (x)二log3X,求出x0 时,g (x)二log3x+2x(7 分)当 x0,所以 g ( - x) =log3 ( x) - 2x因为g (x)为奇
9、函数所以 g (x) = - g ( - x) = - logs ( - x) - 2x二 2x - log3 (-x)(10 分)又因为奇函数g(0)二0(11分)2x 一 lo g3( _ x), x021.(本小题满分12分)已知函数 f (x) =ax2 (a + 2) x + lnx.(1) 当时,求曲线y=f(x)在点(1, f(l)处的切线方程;(2) 当a0时,若f(x)在区间1, e上的最小值为一2,求a的取值范围.解:当 a=l 时,f(x) =x3x + lnx, f (x) =2x 3+ .x因为 f (1)=0, f(l)=-2,所以切线方程是y = 2.(2)圆C的
10、参数方程为在直线Qcos 【解】(1)由点(2)函数 f (x) =ax2 (a+2)x + lnx 的定义域是(0, +).当 a0 时,f (x)=2ax_(a+2) +丄=2心亠_(4 + 2)兀+1(x0).XX令 f,(x)=0,即 F (x)=曲 Td + m + 1 = I Ull 处-11 =0,XX得 x= + 或 x= 2.当0-l,即aNl时,彳在口,e上单调递增,a所以f(x)在1, e上的最小值是f(l) = -2;当K-e时,f(x)在1, e上的最小值f (丄)f(l)= 一2,不合题意;aa当丄2e时,f(x)在1, e上单调递减.所以f(x)在1, e上的最小值f (e)f(l)=-2,不合题意.综上a的取值范围为1, +8).22. (本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点/的 极坐标为(、也,直线/的极坐标方程为Qcos(一*)=日,且点在直线/上.(1)求日的值及直线1的直角坐标方程; x=l+cos a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医学影像技术师执业考试试卷及答案
- 2025年建筑师执业考试模拟试题及答案
- 2025年竞技体育教练员资格考试卷及答案
- 2025年化学基础知识及应用考试试卷及答案
- 2025年机械工程师职业资格考试试卷及答案
- 电力设备检修与供应链管理承包合同
- 医疗机构执业医师岗位全职聘用及医疗设备租赁合同
- 公众号付费阅读功能与社交媒体互动集成合同
- 个性化别墅庭院景观设计、施工与景观照明工程合同
- 海外留学考试自习室租赁及学习资料供应合同
- 院感爆发的试题及答案
- 委托融资协议书范本
- 2025-2030中国安宫牛黄丸行业市场现状分析及竞争格局与投资发展研究报告
- 防洪防汛安全教育知识培训
- 泵站泵室清淤施工方案
- 养老院食堂管理制度
- 2025年广东广州中物储国际货运代理有限公司招聘笔试参考题库附带答案详解
- 2025版各行业《重大事故隐患执法检查参考标准》
- 乔哈里视窗培训课件
- 《免疫细胞疗法》课件
- 社区居民对健康服务中心的满意度调查与分析
评论
0/150
提交评论