下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、与圆有关的综合问题圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题解决此类问题的关键是数形结合思想的运用典例已知圆x2y24上一定点a(2,0),b(1,1)为圆内一点,p,q为圆上的动点(1)求线段ap中点的轨迹方程;(2)若pbq90°,求线段pq中点的轨迹方程解(1)设ap的中点为m(x,y),由中点坐标公式可知,p点坐标为(2x2,2y)因为p点在圆x2y24上,所以(2x2)2(2y)24.故线段ap中点的轨迹方程为(x1)2y21.(2)设pq的中点为n(x,y)在rtpbq中,|p
2、n|bn|.设o为坐标原点,连接on,则onpq,所以|op|2|on|2|pn|2|on|2|bn|2,所以x2y2(x1)2(y1)24.故线段pq中点的轨迹方程为x2y2xy10.方法技巧求与圆有关的轨迹问题的4种方法针对训练1(2019·厦门双十中学月考)点p(4,2)与圆x2y24上任意一点连接的线段的中点的轨迹方程为()a(x2)2(y1)21 b(x2)2(y1)24c(x4)2(y2)24 d(x2)2(y1)21解析:选a设中点为a(x,y),圆上任意一点为b(x,y),由题意得,则故(2x4)2(2y2)24,化简得,(x2)2(y1)21,故选a.2已知点p(2
3、,2),圆c:x2y28y0,过点p的动直线l与圆c交于a,b两点,线段ab的中点为m,o为坐标原点(1)求m的轨迹方程;(2)当|op|om|时,求l的方程及pom的面积解:(1)圆c的方程可化为x2(y4)216,所以圆心为c(0,4),半径为4.设m(x,y),则(x,y4),(2x,2y)由题设知·0,故x(2x)(y4)(2y)0,即(x1)2(y3)22.由于点p在圆c的内部,所以m的轨迹方程是(x1)2(y3)22.(2)由(1)可知m的轨迹是以点n(1,3)为圆心,为半径的圆由于|op|om|,故o在线段pm的垂直平分线上又p在圆n上,从而onpm.因为on的斜率为3
4、,所以l的斜率为,故l的方程为x3y80.又|om|op|2,o到l的距离为,所以|pm|,spom××,故pom的面积为.与圆有关的最值或范围问题例1(2019·兰州高三诊断)已知圆c:(x1)2(y4)210和点m(5,t),若圆c上存在两点a,b使得mamb,则实数t的取值范围是()a2,6 b3,5c2,6 d3,5解析法一:当ma,mb是圆c的切线时,amb取得最大值若圆c上存在两点a,b使得mamb,则ma,mb是圆c的切线时,amb90°,amc45°,且amc90°,如图,所以|mc|,所以16(t4)220,所以2t
5、6,故选c.法二:由于点m(5,t)是直线x5上的点,圆心的纵坐标为4,所以实数t的取值范围一定关于 t4对称,故排除选项a、b.当t2时,|cm|2,若ma,mb为圆c的切线,则sincmasincmb,所以cmacmb45°,即mamb,所以t2时符合题意,故排除选项d.选c.答案c例2已知实数x,y满足方程x2y24x10.求:(1)的最大值和最小值;(2)yx的最大值和最小值;(3)x2y2的最大值和最小值解原方程可化为(x2)2y23,表示以(2,0)为圆心,为半径的圆(1)的几何意义是圆上一点与原点连线的斜率,所以设k,即ykx.当直线ykx与圆相切时,斜率k取最大值或最
6、小值,此时 ,解得k±.所以的最大值为,最小值为.(2)yx可看成是直线yxb在y轴上的截距当直线yxb与圆相切时,纵截距b取得最大值或最小值,此时,解得b2±.所以yx的最大值为2,最小值为2.(3)x2y2表示圆上的一点与原点距离的平方由平面几何知识知,x2y2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值因为圆心到原点的距离为2,所以x2y2的最大值是(2)274,最小值是(2)274.与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解与圆有关的最值问题,常见类型及解题思路如下:常见类型解
7、题思路型转化为动直线斜率的最值问题taxby型转化为动直线截距的最值问题,或用三角代换求解m(xa)2(yb)2型转化为动点与定点的距离的平方的最值问题1(2019·新余一中月考)直线xyt0与圆x2y22相交于m,n两点,已知o是坐标原点,若|,则实数t的取值范围是_解析:由|,两边平方,得·0,所以圆心到直线的距离d×1,解得t,故实数t的取值范围是, 答案:, 2已知点p(x,y)在圆x2(y1)21上运动,则的最大值与最小值分别为_解析:设k,则k表示点p(x,y)与点a(2,1)连线的斜率当直线pa与圆相切时,k取得最大值与最小值设过(2,1)的直线方程为y1k(x2),即kxy12k0.由1,解得k±.答案:,3(2019·大庆诊断考试)过动点p作圆:(x3)2(y4)21的切线pq,其中q为切点,若|pq|po|(o为坐标原点),则|pq|的最小值是_解析:由题可知圆(x3)2(y4)21的圆心n(3,4)设点p的坐标为(m,n),则|pn|2|pq|2|nq|2|pq|21,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33339-2016全钒液流电池系统 测试方法》(2026年)深度解析
- (正式版)DB12∕T 882-2019 《羊包虫病防治技术规程 》
- 任务3.3采用CVS文件批量标记发货
- 5G-A实训任务-专网实操课件1
- 《鱼我所欲也》第一课时【从基到通】九年级语文下册重点课文教学(统编版)
- 医疗数据安全成熟度评估:区块链技术与医疗物联网结合
- 医疗数据安全态势感知的共识机制应用
- 医疗数据安全威胁情报的共识机制共享
- 胸整形课件教学课件
- 【9历第三次月考】安徽省宿州九中教育集团2025-2026学年九年级上学期12月月考历史试题(含解析)
- 2025年韩家园林业局工勤岗位工作人员招聘40人备考题库及参考答案详解一套
- 四川省达州市达川中学2025-2026学年八年级上学期第二次月考数学试题(无答案)
- 2025陕西西安市工会系统开招聘工会社会工作者61人历年题库带答案解析
- 江苏省南京市秦淮区2024-2025学年九年级上学期期末物理试题
- 债转股转让协议书
- 外卖平台2025年商家协议
- (新教材)2026年人教版八年级下册数学 24.4 数据的分组 课件
- 老年慢性病管理及康复护理
- 2025广西自然资源职业技术学院下半年招聘工作人员150人(公共基础知识)测试题带答案解析
- 2026年海南经贸职业技术学院单招(计算机)考试参考题库及答案1套
- 2025天津大学管理岗位集中招聘15人备考考点试题及答案解析
评论
0/150
提交评论