




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Assignment of Principles of Navigation (INS)My Chinese Name白赫My Class No.1204201My Student No.1120110412Dec 28th, 2015Contents1. The First Task - stationary test31.1 Task description31.2 The Process of Solution31.3 Programming Codes in MATLAB41.4 Analysis of Result42. The Second Task - flight t
2、est52.1 Task description52.2 The Process of Solution62.3 Programming Codes in MATLAB92.4 Analysis of Result123. Reflection on the simulation121. The First Task - stationary test1.1 Task descriptionA missile equipped with SINS is initially at the position of 46o NL and 123o EL, stationary on a launch
3、 pad. Three gyros, GX, GY, GZ, and three accelerometers, AX, AY, AZ, are installed along the axes Xb, Yb, Zb of its body frame respectively.12The body frame of the missile initially coincides with the geographical frame, as shown in the figure, with its pitching axis Xb pointing to the east, rolling
4、 axis Yb to the north, and azimuth axis Zb upward. Then the body of the missile is made to rotate in 3 steps:(1) -22° around Xb(2) 78° around Yb(3) -16° around ZbUpZbXbEastNorthYbAfter that, the body of the missile stops rotating. You are required to compute the final outputs of the t
5、hree accelerometers on the missile, using quaternion and ignoring the device errors. It is known that the magnitude of gravity acceleration is g = 9.8m/s2.1.2 The Process of SolutionFirst rotation: around axis X for , the quaternion is: Second rotation: around axis Y for , the quaternion is: Third r
6、otation: around axis Z for , the quaternion is: The combination quaternion and is:Thus the final coordinate is:The final output of the accelerometers on the missile are:1.3 Programming Codes in MATLAB%The 1/2 angle of three rotations Angle_X=(-22/2)/180*pi;Angle_Y=(78/2)/180*pi;Angle_Z=(-16/2)/180*p
7、i;q1=cos(Angle_X),sin(Angle_X),0,0; %The quaternion of first rotationq2=cos(Angle_Y),0,sin(Angle_Y),0; %The quaternion of second rotationq3=cos(Angle_Z),0,0,sin(Angle_Z); %The quaternion of third rotationA0=0,0,0,9.8; %The quaternion of Acc in the old frame%The multiplication of quaternion(q=q1q2q3)
8、p=quatmultiply(q1,q2);q=quatmultiply(p,q3);%The inverse of quaternion qqinv=quatinv(q);%The output of Acc in the fighterA1=quatmultiply(qinv,A0);A2=quatmultiply(A1,q)1.4 Analysis of ResultWe have learned in section 1.1 of Unit 10, successive rotations can be combined into a single rotation. The body
9、 of this missile is made to rotate in 3 steps. Then the quaternion q for the combined rotation can be obtained using According to this method, we can get the combination quaternion q. Now, we have a rotating frame, and a fixed vector, namely accelerometers vector in this circumstance. The coordinate
10、s of the vector can be transformed from the old frame to new frame using images, that is,Finally, we get the final outputs of the three accelerometers on the missile.2. The Second Task - flight test2.1 Task descriptionInitially, the missile is stationary on the launch pad, 400m above the sea level.
11、Its rolling axis is vertical up, and its pitching axis is to the east. Then the missile is fired up.The outputs of the gyros and accelerometers are both pulse numbers. Each gyro pulse is an angular increment of 0.01 arc-sec, and each accelerometer pulse is 1e-7g, with g = 9.8m/s2. The gyro output fr
12、equency is 200Hz, and the accelerometers is 10Hz. The outputs of the gyros and accelerometers within 1315s are stored in a MATLAB data file named imu.mat, containing matrices gm of 263000×3 and am of 13150×3 respectively. The format of the data is as shown in the tables, with 10 rows of ea
13、ch matrix selected. Each row represents the outputs of the type of sensors at each sampling time.AXAYAZ-255229251550357-15363805-255229251550357-15363805-255229251550357-15363805-255229251550357-15363805-303759452365312-15643989-352289653180268-15924172-400819853995223-16204356-449350154810179-16484
14、539-497880355625135-16764723-497880355625135-16764723GXGYGZ-1872-3611-1945-720-1-2014-10800-2087-14390-2160-17990-2234-21601-2303-25201-2375-28781-2450-32390-2522-35992The Earth can be seen as an ideal sphere, with radius 6371.00km and spinning rate 7.292×10-5 rad/s, The errors of the sensors a
15、re ignored, so is the effect of height on the magnitude of gravity. The outputs of the gyros are to be integrated every 0.005s. The rotation of the geographical frame is to be updated every 0.1s, so are the velocities and positions of the missile.You are required to:Compute the final attitude quater
16、nion, longitude, latitude, height, and east, north, vertical velocities of the missile.Compute the total horizontal distance traveled by the missile.Draw the latitude-versus-longitude trajectory of the missile, with horizontal longitude axis.Draw the curve of the height of the missile, with horizont
17、al time axis.2.2 The Process of SolutionThe simplified navigation algorithm for SINS is as shown in the Figure 1.Figure 1:Simplified navigation algorithm for SINSResults:(1)The final attitude quaternion The final longitude, latitude and height of the missile are as follow:Longitude=,Latitude=Height=
18、mThe east, north and vertical of the fighter at last are: (2)The total horizontal distance traveled by the missile is :.And the curve of the horizontal distance of the missile, with horizontal time axis is as shown in the Figure 2.Figure 2: The curve of the horizontal distance of the missile(3)The l
19、atitude-versus-longitude trajectory of the missile is as shown in the Figure 3.Figure 3: The latitude-versus-longitude trajectory of the missile(4)The curve of the height of the missile, with horizontal time axis is as shown in the Figure 4. Figure 4: The curve of the height of the missile2.3 Progra
20、mming Codes in MATLAB%initialize the parameter of systemk=20;K=13150;T=0.1;Gyro_pulse=0.01/3600/180*pi;Acc_pulse=9.8/10000000;R=6371000;g=9.8;W_earth=0.00007292;Q=zeros(13151,4);Q(1,:)=cos(90/2)/180*pi),sin(90/2)/180*pi),0,0;%initial quaternion %define and initialize the matrix of Longitude,Latitude
21、 and HeightLongitude=zeros(1,13151);Latitude=zeros(1,13151);Height=zeros(1,13151);Longitude(1)=123;Latitude(1)=46;Height(1)=400;%define and initialize the matrix of velocity with length of 13150Ve=zeros(1,13151); %east velocityVn=zeros(1,13151); %north velocityVu=zeros(1,13151); %upward velocityX=ze
22、ros(1,13151); %distance of horizon%define and initialize the matrix of specific force with length of 13150fe=zeros(1,13151);fn=zeros(1,13151);fu=zeros(1,13151);FE=zeros(1,13151);FN=zeros(1,13151);FU=zeros(1,13151);%load the data provided by teacherload imu.mat;for N=1:K %starting iteration for posit
23、ion and xelocity q=zeros(21,4); q(1,:)=Q(N,:); for n=1:k %starting iteration for attitude w=Gyro_pulse*gm(N-1)*20+n,1:3); %angular increment output of gyro w_mod=quatmod(w,0); W= 0,-w(1),-w(2),-w(3); w(1),0,w(3),-w(2); %angular increment matrix w(2),-w(3),0,w(1); w(3),w(2),-w(1),0 ; I=eye(4); % 4 or
24、der implementation % Taylor series approximately S=1/2-w_mod2/48; C=1-w_mod2/8+w_mod4/384; q(n+1,:)=(C*I+S*W)*q(n,:)')' end %end of the inner loop, namely attitude loop Q(N+1,:)=q(n+1,:); % angular rates of geographical frame WE=-Vn(N)/R; WN=Ve(N)/R+W_earth*cos(Latitude(N)/180*pi); WU=Ve(N)/
25、R*tan(Latitude(N)/180*pi)+W_earth*sin(Latitude(N)/180 *pi); Gama=WE,WN,WU*T; Gama_mod=quatmod(WE,WN,WU,0); n=Gama/Gama_mod; Qg=cos(Gama_mod/2),sin(Gama_mod/2)*n; Q(N+1,:)=quatmultiply(quatinv(Qg),Q(N+1,:);%updating attitude of missle using rotation of geographical frame %specific force measured by A
26、cc. fb=Acc_pulse*am(N,1:3); f1=quatmultiply(Q(N+1,:),0,fb); fg=quatmultiply(f1,quatinv(Q(N+1,:); fe(N)=fg(2); fn(N)=fg(3); fu(N)=fg(4); %computing the relative accelaration of vehicle FE(N)=fe(N)+Ve(N)*Vn(N)/R*tan(Latitude(N)/180*pi)-(Ve(N)/R+2*W_earth*cos(Latitude(N)/180*pi)*Vu(N)+2*Vn(N)*W_earth*s
27、in(Latitude(N)/180*pi); FN(N)=fn(N)-2*Ve(N)*W_earth*sin(Latitude(N)/180*pi)-Ve(N)2/R*tan(Latitude(N)/180*pi)-Vn(N)*Vu(N)/R; FU(N)=fu(N)+2*Ve(N)*W_earth*cos(Latitude(N)/180*pi)+(Ve(N)2+Vn(N)2)/R-g; %integrated for velocity Ve(N+1)=FE(N)*T+Ve(N); Vn(N+1)=FN(N)*T+Vn(N); Vu(N+1)=FU(N)*T+Vu(N); %updating
28、 the position Latitude(N+1)=(Vn(N)+Vn(N+1)/2*T/R/pi*180+Latitude(N); Longitude(N+1)=(Ve(N)+Ve(N+1)/2*T/(R*cos(Latitude(N)/180*pi) /pi*180+Longitude(N); Height(N+1)=(Vu(N)+Vu(N+1)/2*T+Height(N); %computing the distance of horizon Xe=(Ve(N)+Ve(N+1)/2*T; Xn=(Vn(N)+Vn(N+1)/2*T; X(N+1)=X(N)+sqrt(Xe2+Xn2)
29、;end%draw the curve of Longitude and Latitudefigure(1);xlabel('经度/度');ylabel('纬度/度');grid on;hold on;plot(Longitude,Latitude);%draw the curve of heightfigure(2);xlabel('时间/秒');ylabel('高度/米');grid on;hold on;plot(0:13150),Height);%draw the curve of distance of horizonf
30、igure(3);xlabel('时间/秒');ylabel('航程/米');grid on;hold on;plot(0:13150),X)2.4 Analysis of ResultThere are two loops for navigation computing. The inner loop is iterated for attitude while the out is iterated for position and velocity. In SINS, the differential equation iswhere q is atti
31、tude quaternion of missile. Its Peano-Baker solution isUsing the output of gyros, we can gain the angular increment matrix.And the order implementation can be used. Thus, every iteration, the will be updated. Meanwhile the geographical frame is also changed because of the motion of vehicle and the s
32、pinning of the earth though the rate is really low. To ensure the precision of navigation we should update the geographical frame every 0.1 second. By now the digital platform is established through computer. Then we should acquire the vehicles relative acceleration on earth through the transformation of accelerometers output. Finally, the first integration get the velocity and integration again to get the position, which means that this simulation of miss
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经典经济理论与公共政策的应用试题及答案
- 规范化学习过程中的公路工程试题及答案
- 2025年信息系统项目管理师拔高试题及答案
- 从产业变革看数字化转型下的新商业模式探索
- 基于用户画像的消费者行为分析与精准营销
- 物流与供应链图书企业制定与实施新质生产力项目商业计划书
- 智能家居仿生安防系统企业制定与实施新质生产力项目商业计划书
- 环境教育中心企业制定与实施新质生产力项目商业计划书
- 漂流在线平台行业深度调研及发展项目商业计划书
- 油封密封件在线平台行业深度调研及发展项目商业计划书
- 6S知识竞赛暨技能比武活动方案
- 教育学原理简答题和论述题
- 部编一年级下册语文 第四单元复习教案2份
- 杭州银行春季校园2023年招聘笔试历年高频考点试题答案详解
- 游博物馆小学作文
- 江苏省苏州市昆山市2022-2023学年六年级数学第二学期期末达标测试试题含解析
- 光伏系统调试方案
- 新概念英语电子版
- 徕卡v lux4中文说明书大约工作时间和可拍摄图像数量
- 2023年山东省济南市高新区中考物理一模试卷(含解析)
- 单基因遗传病的分子生物学检验-医学院课件
评论
0/150
提交评论