版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.1数形结合之美.2你想知道吗你想知道吗? 国庆节前,为了更好观看阅兵式,国庆节前,为了更好观看阅兵式,小明妈妈买了一部小明妈妈买了一部42英寸英寸(106厘米厘米)的电视机的电视机.小明量了电视机的屏幕后,发小明量了电视机的屏幕后,发现屏幕只有现屏幕只有85厘米厘米长和长和64厘米厘米宽,他觉宽,他觉得一定是售货员搞错了。你同意他的想得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?法吗?你能解释这是为什么吗?探索勾股定理.3数学故事链接数学故事链接 相传两千五百年前,一次毕达哥拉斯去相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反朋友家作客,发现朋友家用
2、砖铺成的地面反映直角三角形三边的某种数量关系,同学们,映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什我们也来观察下面的图案,看看你能发现什么?么?探索勾股定理探索勾股定理.4数学家毕达哥拉斯的发现:数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?的面积有什么关系?SA+SB=SCABC探索勾股定理.5ABCABC A的面积的面积(单位面积)(单位面积) B的面积的面积(单位面积)(单位面积) C的面积的面积(单位面积)(单位面积)图图1-1图图1-291625163652探索勾股定理.6ABCS SA A=a=a2 2S SB B=b=b2 2S SC C=
3、c=c2 2abca2+b2=c2设:直角三角形的三边长分别是设:直角三角形的三边长分别是a、b、c猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?SA+SB=SC探索勾股定理.7 如果直角三角形的两条直角边如果直角三角形的两条直角边长分别为长分别为a,ba,b,斜边长为,斜边长为c c,那么,那么c c2 2=a=a2 2+b+b2 2. .abc勾勾股股弦弦探索勾股定理.8bacs2s1试一试试一试? 请利用此图象,证明勾股定理:请利用此图象,证明勾股定理: a2+b2=c2探索勾股定理.9走进数学史.10美国第二十任美国第二十任总统伽菲尔德总统伽菲尔德总统巧证勾股
4、定理总统巧证勾股定理aabbccADCBE返回.11应用勾股定理ABC选一选选一选.12应用勾股定理讲一讲讲一讲86ABC求图中直角三角形的未知边的长度。求图中直角三角形的未知边的长度。1517ABC.13勾股定理,想得再多一点0 做一做做一做.14勾股定理,想得再多一点 如图,如图,受台风莫拉克影响,受台风莫拉克影响,一棵树在离地面一棵树在离地面4 4米处断裂,树的顶部落在离树跟底部米处断裂,树的顶部落在离树跟底部3 3米处,这棵米处,这棵树树折断前折断前有多高?有多高?4米米3米米.15勾股定理,想得再多一点 国庆节前,为了更好观看阅兵式,小明国庆节前,为了更好观看阅兵式,小明妈妈买了一部
5、妈妈买了一部42英寸英寸(106厘米厘米)的电视机)的电视机.小明量了电视机的屏幕后,发现屏幕只有小明量了电视机的屏幕后,发现屏幕只有85厘米厘米长和长和64厘米厘米宽,他觉得一定是售货员宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是搞错了。你同意他的想法吗?你能解释这是为什么吗?为什么吗?回头再看看回头再看看.16内容总结:内容总结:(1)运用勾股定理的条件是什么?)运用勾股定理的条件是什么?(2)勾股定理揭示了直角三角形的什么关系?)勾股定理揭示了直角三角形的什么关系?(3)勾股定理有什么用途?)勾股定理有什么用途?方法总结:方法总结:用直角三角形三边表示三个正方形面积用直角
6、三角形三边表示三个正方形面积观察归观察归纳发现勾股定理纳发现勾股定理任意画一个直角三角形,再验任意画一个直角三角形,再验证自己的发现。证自己的发现。.17家庭作业:家庭作业:课本课本P55 习题习题2 补充:补充: 1、求下列直角三角形中未知边的长、求下列直角三角形中未知边的长: 补充:补充: 1、求下列直角三角形中未知边的长、求下列直角三角形中未知边的长: 2 2、如图所示,一棵大树在一次强烈台风中于离地面、如图所示,一棵大树在一次强烈台风中于离地面10米处折断倒下,米处折断倒下, 树顶落在离树根树顶落在离树根24米处米处.大树在折断之前高多少?大树在折断之前高多少? .18.19在中国古代
7、,人们把弯曲成直角的手臂的上半部分称为在中国古代,人们把弯曲成直角的手臂的上半部分称为 勾勾 ,下半部分称为,下半部分称为 股股 。我国古代学者把直角三角形较。我国古代学者把直角三角形较短的直角边称为短的直角边称为“勾勾”,较长的直角边称为,较长的直角边称为“股股”,斜,斜边称为边称为“弦弦”. .勾勾股股勾股定理的由来这个定理在中国又称为这个定理在中国又称为“商高定理商高定理”,在外国称为,在外国称为“毕达哥拉毕达哥拉斯定理斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。纪的中国人。
8、当时中国的朝代是西周,是奴隶社会时期。 在中国古代大约是战国时期西汉的数学著作在中国古代大约是战国时期西汉的数学著作周髀算经周髀算经中记中记录着商高同周公的一段对话。商高说:录着商高同周公的一段对话。商高说:“故折矩,故折矩,勾广三,股修勾广三,股修四,经隅五四,经隅五。“什么是什么是”勾、股勾、股“呢?在中国古代,人们把弯曲成呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为直角的手臂的上半部分称为“勾勾”,下半部分称为,下半部分称为“股股”。商高那。商高那段话的意思就是说:当直角三角形的两条直角边分别为段话的意思就是说:当直角三角形的两条直角边分别为3 3(短边)和(短边)和4 4(长边
9、)时,径隅(就是弦)则为(长边)时,径隅(就是弦)则为5 5。以后人们就简单地把这个事。以后人们就简单地把这个事实说成实说成“勾三股四弦五勾三股四弦五”。由于勾股定理的内容最早见于商高的。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作话中,所以人们就把这个定理叫作 商高定理商高定理 。毕达哥拉斯(毕达哥拉斯(PythagorasPythagoras)是古希腊数学家,他是公元前五世)是古希腊数学家,他是公元前五世纪的人,纪的人,比商高晚出生五百多年比商高晚出生五百多年。希腊另一位数学家欧几。希腊另一位数学家欧几里德(里德(EuclidEuclid,是公元前三百年左右的人)在编著,
10、是公元前三百年左右的人)在编著几何原本几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为定理称为“毕达哥拉斯定理毕达哥拉斯定理”,以后就流传开了,以后就流传开了。(为了庆祝这一定理。(为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百百牛定理牛定理”)走进数学史勾股定理的证明方法证法一证法二证法三(邹元治证明)(邹元治证明)(赵爽证明)(赵爽证明) 赵爽赵爽:我国古代数学家我国古代数学家走进数学史勾股定理的证明方
11、法证法四证法五证法六(加菲尔德证明)(加菲尔德证明) 加菲尔德加菲尔德:第二十任总统第二十任总统(梅文鼎证明)(梅文鼎证明) 梅文鼎梅文鼎:清代天文、数学家清代天文、数学家(项明达证明)(项明达证明) 项明达项明达:清代数学家清代数学家走进数学史勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既
12、重要又简单,更容甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。易吸引人,才使它成百次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理的证明方法已有有资料表明,关于勾股定理的证明方法已有500500余种,仅我国余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。清末数学家华蘅芳就提供了二十多种精彩的证法。 在这数百种证明方法中,有的十分精彩,有的十分简洁,在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。有的因为证明者身份的特殊而非常著名。 现在在网络上看到较多的是现在在网络上看到较多的是1616种种, ,包括前面的包括前面的6 6种种, ,还有还有: : 欧几里得证明欧几里得证明、 利用相似三角形性质证明利用相似三角形性质证明、 杨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 萍乡市同源人力资源有限公司面向社会公开招聘合同制临床医师备考核心试题附答案解析
- “梦工场”招商银行厦门分行2026寒假实习生招聘备考核心题库及答案解析
- 2025湖北恩施州巴东县水利局公益性岗位招聘2人考试重点试题及答案解析
- 2025中原银行农村普惠金融支付服务点招聘备考核心题库及答案解析
- 2025安徽安庆市太湖县关工委、老年大学招聘编外人员2人备考核心题库及答案解析
- 高中生物教学中基因编辑伦理决策模拟课题报告教学研究课题报告
- 2025-2026 学年高一 英语 期中复习卷 试卷及答案
- 2025年高端厨具市场消费趋势与竞争格局行业报告
- 2025青海海东市应急管理局面向社会招聘应急管理辅助人员15人考试核心试题及答案解析
- 2025年文化旅游主题乐园IP跨界合作新业态可行性分析报告
- 2025年华中科技大学职工队伍公开招聘备考题库完整答案详解
- 2025年下半年贵州遵义市市直事业单位选调56人笔试考试备考题库及答案解析
- 水电分包协议合同范本
- 2025年初级社会工作者考试《社会工作综合能力》真题及答案解析
- 货架租用合同范本
- 还建房出售合同范本
- 2025年无人机航拍理论题库(含答案)
- 安阳学院期末考试原题及答案
- 校园广播站每日提醒培训课件
- 中层竞聘面试必-备技能与策略实战模拟与案例分析
- 政银合作融资模式-洞察与解读
评论
0/150
提交评论