外文翻译-MAINBOT—在广泛的工业领域用来检查和维修的移动机器人.doc

上料机器人手臂结构设计(含CAD图纸和说明书)

收藏

压缩包内文档预览:(预览前20页/共22页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:166715213    类型:共享资源    大小:7.50MB    格式:ZIP    上传时间:2021-11-21 上传人:机****料 IP属地:河南
50
积分
关 键 词:
机器人 手臂 结构设计 CAD 图纸 说明书
资源描述:

资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================

内容简介:
毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文译文题目: MAINBOT-在广泛的工业领域用来检查和维修 的移动机器人 学生姓名: 学 号: 专 业: 所在学院: 指导教师: 职 称: 20xx年 2月 27日ScienceDirectMAINBOT mobile robots for inspection and maintenance inextensive industrial plantsI. Maurtuaa , L. Susperregia, A. Fernndeza, C. Tuboa , C. Perezb, J. Rodrguezc, T.Felschd, M. GhrissieaIK4-Tekniker, Iaki Goenaga 5, Eibar 20600, SpainbTECNATOM, Avda. de Montes de Oca 1, San Sebastin de los Reyes (MADRID)28703, SpaincTORRESOL Energy, Avda. Zugazarte 61, Getxo 48930, Spaind FRAUNHOFER IFF, Postfach 14 53, Magdeburg 39004, Germanye ROBOSOFT, Technopole Izarbel, Bidart F-64210, FranceAbstractMAINBOT project is developing service robots applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). MAINBOT aims at using already available robotic solutions to deploy innovative systems in order to fulfill project industrial objectives: to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling sensors or special non destructive testing equipment.MAINBOT will validate the proposed solutions in two solar plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, seven hours of storage, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m tower height ), the variability of conditions (outdoor, day-night), safety requirements, etc. The objective is to increase the efficiency of the installation by improving the inspection procedures and technologies. Robot capabilities are developed at different levels: (1) Simulation: realistic testing environments are created in order to validate the algorithms developed for the project using available robot, sensors and applicationenvironments.(2)Autonomous navigation: Hybrid (topological-metric) localization and planning algorithms are integrated in order to manage the huge extensions. (3) Manipulation: Robot arm movement planning and control algorithms are developed for positioning sensing equipment with accuracy and collision avoidance. (4) Interoperability: Mechanisms to integrate the heterogeneous systems taking part in the robot operation, from third party inspection equipments to the end user maintenance planning. (5) Non-Destructive Inspection: based on eddy current and thermography, detection algorithms are developed in order to provide automatic inspection abilities to the robots. 2013 The Authors. Published by Elsevier Ltd. Selection and peer review by the scientific conference committee of SolarPACES 2013 under responsibility of PSE AG. Keywords: Mobile robotics, Maintenance, Non-destructive inspection, Thermosolar 2013 I. Maurtua. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license .Selection and peer review by the scientific conference committee of SolarPACES 2013 under responsibility of PSE AG.Final manuscript published as received without editorial corrections.1. IntroductionMAINBOT project is developing service robots applications to autonomously execute inspection tasks in extensive industrial plants on equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). MAINBOT aims at using already available robots to deploy innovative solutions in order to fulfil project industrial objectives: to provide a means to help measuring several physical parameters in multiple points by autonomous robots able to navigate and climb structures, handling sensors or special non destructive testing equipment.NomenclaturePT Parabolic Through collectorCR Central ReceiverSCA Solar Collector AssemblySCE Solar Collector ElementNDT Non Destructive TestHTF Heat Transfer FluidFA Functional AnalysisFMEA Failure Modes an Effects AnalysisROS Robot Operating SystemGPS Global Positioning SystemINU Inertial Navigation UnitTo define the requirements of this type of industries two validation scenarios have been selected, a Parabolic Through collector technology (PT) solar plant (50Mw, seven hours of storage) and a Central Receiver technology (CR) solar plant (19.9 Mw, fifteen hours of storage) shown in Fig. 1. Both plants pose strong challenges in terms of the number of elements to be inspected, the size of the elements, the working conditions, etc. Some figures can present an idea of the magnitude of the problem in extensive plants: 400.000 mirrors, with a total of 1.200.000 m2 of surface in PT. 2.650 heliostats (10 meters high and 11 meters width) with 35 mirrors in CR. About 90km of absorber tubes to be inspected (180 km) in PT. A tower of 140 m, at 120m receiver tubes area of 11m height.a b Fig. 1. Solar plants used for validation; (a) parabolic through, (b) towerBased on a set of selection criteria (positive impact in plant, novelty, feasibility, risk), several operations, to be performed autonomously by the robots, are selected: Ubiquitous sensing. The reflectivity index of the plant is a parameter of paramount importance in order to decide the cleaning and maintenance activities. Measurement of reflectivity is taken by a special purpose sensor, the reflectometer. A global field reflectivity index is obtained statistically using specific measurements in chosen mirrors from the solar field. The ground robot places a reflectometer on the specific points of the SCE, touching the mirrors and recording data. Leakage detection. In PT plants, Heat Transfer Fluid (HTF) circulates at high temperature (around 390C) inside the absorber tubes. HTF leakages are no desirables because oil must be replaced and this operation needs to put the SCEs out of service during two or three days. Robots using thermography inspection techniques are performing this detection. Surface defects detection in vertical structures. In CR plants a receiver located at the top of a tower heats molten salts. The receiver is a polyhedral structure composed of several panels of pipes. Receiver pipes have an external coating in order to improve radiation absorption. This coating has a thickness of microns. The climbing robot moves on top of those panels performing eddy current inspection, to assess the status of the coating by measuring its thickness. Moreover, a visual camera records external surface to detect loss of coating. Surface defects detection in horizontal structures. It is estimated that 2% of the mirrors must be replaced every year, and 0,83% mirrors are permanently broken in the plant. Ground robots in the plant look for broken mirrors since early detection can contribute to improve this efficiency. In addition, the ground robot patrolling at night and using thermography inspection is used to identify any kind of loss of vacuum in absorber tubes. Internal defects detection. Detection of corrosion and internal defects in general (cracks, etc.) is required in many components in a power plant. The climbing robot will test the presence of this kind of possible defects in the collector tubes.This paper is structured as follows, section 2 shows the design requirements and a description of the robots used in the project, section 3 explains in detail all the basic technologies developed to endow MAINBOT robots with the capabilities to autonomously perform maintenance activities, section 4 explains the different NDT approaches selected to detect degradation problems in industrial plants. Finally section 5 provides the main conclusions and future work.2. Robot designIn MAINBOT new robotic platforms are re-designed considering all the requirements defined in the application scenarios and using previously existing platforms as a starting point. Table 1 shows a summary of the requirements considered.Table 1. Requirements summary. In addition, a Reliability, Availability, Maintainability and Safety (RAMS) methodology, applied to the robots redesign, has been followed. Based on the validation scenarios several analysis have been performed and both, hardware and software levels have been considered.Functional Analysis. The Functional Analysis (FA) is a top-down structured and systematic evaluation of both robot types. It is a qualitative method to identify and analyze all the functions related to the systems and subsystems integrated into each robot. The purpose is to assure that the robot does not cause or contribute in a significant way to personal injuries and/or material damages. This approach is combined with the design FMEA approach to obtain a list of potential Failure Modes, with their consequences and the existing proposed mitigations.Reliability and Maintainability Analysis. The objective is to calculate or predict the reliability of a robot at different stages during their design. Once the distributions for the Reliability and the Maintainability of each component have been calculated, simulation is used to calculate the Availability (A) of the whole robot. To evaluate system availability Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are considered. Combining Reliability Block Diagram (RBD) representation with Monte-Carlo simulation allows evaluating Availability when there are complex configurations (based on time dependant distributions).Based on all these requirements ground robot and vertical robot have been re-designed.2.1. Ground robot re-designAs illustrated in Fig. 2, the ground robot is built around a rigid mechanical structure adapted to the off-road navigation. The ground robot is an electrically driven, 4 wheel-drive / 4 wheel-steer mobile robot base and has a very good clearing capacity, offering a real solution for reconnaissance, monitoring and safety operations while minimizing human risks. It uses a hydropneumatic suspension capable of absorbing high and low frequency vibrations induced by the ground.Fig. 2. Ground robot description2.2. Climbing/vertical robot re-designThe MAINBOT approach for the is to design the climbing robot for maintenance tasks of large plants not from the scratch but using and adapting a existing robot design 1. The physical structure of the climbing robot is shown in Fig. 3.Fig. 3. Climbing robot; (a) front view, (b) back view, (c) prototype in amockup3. Autonomous navigation and manipulationThe aim is to endow the robots with the capability to autonomously navigate and manipulate in unstructured environments.3.1. Simulation3D simulation is a powerful tool for exploring what-if scenarios and for providing valuable information before developing real prototypes. Benefits of using 3D simulation in robotics come from: the ability to develop robotic applications without hardware dependency and the cost reduction.In MAINBOT realistic testing environments have been created in order to validate the algorithms developed using available robot, sensors and application environments. A 3D simulation is used for evaluating the use and implementation of the ground mobile base and the manipulator in maintenance activities. After the analysis of state of the art simulation environments such as MORSE 2, Webots 3, UsarSim 4, finally Gazebo 5has been selected. Using different CAD files representing the environment (the validation scenario) the ground robot provided by the robot manufacturer and the arm, a Gazebo model has been built for the complete ground robot system as shown in Fig. 4.Fig. 4. Simulation environment; (a) Ground robot base, (b) Simulated ground robot, (c) Ground arm3.2. NavigationThe navigation algorithms integrated in MAINBOT are designed to build a representation of the environment and generate robot trajectory plans considering the requirements of maintenance activities. Thus, several navigation strategies are considered, by the one hand, for ground navigation and on the other hand for vertical navigation.In the case of ground robot, to navigate, the robot needs a representation of the environment given as a map. Navigation techniques heavily depend on the type of maps used. Most current localization systems use global, metric maps of the workspace. While convenient for small areas, global metric maps have inefficiencies of scale and in addition, are sensible to inaccuracies in both map-making and odometry performance of the robot. Because of the abovementioned reasons, it is becoming common in the field of mobile robotics to use hybrid maps that integrate different representations. Several authors 6 7 propose combining the topological and the metric paradigm and they have shown that characteristics of both can be integrated. In MAINBOT the approach is to use a hybrid map consisting of a topological graph overlaid with local occupancy grids. As MAINBOT scenario is a completely outdoor scenario the localization problem is solved integrating a dGPS system, an RTK 2 (0.02 m accuracy) with a GPS/INS (inertial navigation system) to overcome the lack of information when GPS signal is lost.The general localization approach in the vertical robot was adapted to the polygonal shape of the receiver scenario. Hereby the robot position relative to the tube panels is important for conducting accurate measurements with the onboard sensor equipment. The sensor localization depends on the position of the crane, the cable winches and the robot movement influenced by external facts such as wind forces and (contact) forces due to interaction with the panels. For the operation of the climbing robot at vertical structures global and local localization functions are considered: Global positioning at the receiver above the selected panel and at the right tower height for docking the robot to the panel and for climbing at the panel. Local positioning of the NDT sensors and cameras at the receiver tubes relative to the robot at the tubes generatrix and maintaining distance to the panel constant.3.3. ManipulationRobots working in unstructured environments have to be aware of their surroundings, avoiding collisions with any kind of obstacles. The manipulation algorithms integrated in MAINBOT are designed to build a representation of the environment using a set of sensors (laser, ultrasound, vision) and generate robot trajectory plans considering the requirements of maintenance activities. Thus, several planning strategies are considered:Planning arm movements with collision avoidance.Relative arm movements guided by sensory input.These strategies allow providing mechanisms in order to perform inspection activities such as positioning of a inspection elements on a surface or tracking an element based on input coming from the inspection system.3.4. InteroperabilityThe interoperability of the heterogeneous elements in the robotic solution is guaranteed by a general architecture on top of ROS 8 middleware that facilitates the organization, the maintainability and the efficiency of the software.Fig. 5 shows the general overview of the robotic architecture: the robot receives as input maintenance tasks called missions either from the user interface (GUI) or an external application (End User). Afterwards, the Manager is in charge of decomposing the missions into tasks that can be performed by the Robotic Components. As explained before, the maintenance robotic system consists of several subcomponents like a mobile base, a manipulator and inspection sensors and systems, etc. During mission execution the Inspection Systems provide feedback about the status of the plant facilities.Fig. 5. System architecture4. Non-destructive inspection techniquesNon Destructive Test (NDT) techniques are used to assess the different degradation problems to be tackled in an industrial plant: surface defects, leakages and internal defects.4.1. Eddy current technologyEddy current inspection is one of several NDT methods that uses “electromagnetism” as the basis for conducting examinations. Eddy current technique allows measuring coating thickness or tube thickness. Existing NDT instrumentation has been selected and adapted to MAINBOT requirements. Two types of ET sensors have been designed and manufactured: low frequency coils (to operate around 1 KHz) and high frequency coils (to operate around 1.5 MHz) shown in Fig. 6. The sensors are protected with a sapphire layer, to protect both tube paint layer and sensor surface. Raw eddy current data is processed on line, and compared with previously calibrated data. Visual inspection is simultaneously carried out to detect external degradation in the tubes. This information is combined with eddy current data (data fusion).Fig. 6. Eddy current sensor coils4.2. Thermography technologyWhen a tube is degraded, and there is a vacuum loss, a gradient of temperature can be detected. The algorithm performs several operations on the thermal images acquired with a thermographic camera (FLIR ThermoVision A20) that is mounted on the ground robot manipulator in an eye-in-hand configuration. Fig. 7 shows an example of the thermal image when vacuum lost is detected. The detection algorithm works in real time coordinated with the ground robot manipulator movements. The tracking algorithm calculates the arm movements in order to hold the tube in the field of view of the thermal camera.Fig. 7. Results of thermography inspection system, detecting vacuum lost5. ConclusionsEfficient and effective maintenance is crucial for all kind of industries. In the case of capital intensive investment industries it is even more relevant and has an important impact in the operation costs during the long life cycle of their production means.MAINBOT proposes using service robots to autonomously execute inspection tasks. A set of application scenarios that cover the general requirements of the maintenance activities in large industries have been selected.Two kind of robotic solutions are developed in MAINBOT. Ground robot, a mobile manipulator composed of a mobile base and a 6DOF manipulator. The ground robot has to move in a large area, the solar field, and it has to reach different inspection areas in the plant and stop at pre-established points.The vertical robot consists of a mobile base and an internal arm for inspection system positioning. The climbing robot has to move in a vertical structure, a tower.MAINBOT is developing technologies for ground autonomous navigation and manipulation. Eddy current and thermography based algorithms have been developed and integrated in robotic platforms.In the near future the validation of the development will be performed in two solar plants in the south of Spain.AcknowledgementsThis work has been partially funded by the European Communitys Seventh Framework Programme (FoF.NMP.2011-3) under grant agreement no 285245.References1 M. Sack, N. Elkmann, T. Felsch and T. Bohme, Intelligent control of modular kinematics - the robot platform SIRIUS, 2002.2 Morse, online Available at: /wiki/morse/.3 Webots, online Available at: /overview.4USARSim,onlineAvailableat:/apps/mediawiki/usarsim/index.php?title=Main_Page.5Gazebo,onlineAvailableat:/gazebo/gazebo.html.6 E. M.-E. ,. B. M. Kurt Konolige, Navigation in Hybrid MetricTopological Maps, IEEE International Conference on Robotics and Automation,ICRA 2011, Shanghai, China, 9-13 May 2011, pp. 3041-3047, 2011.7 I. N. Nicola Tomatis, Hybrid simultaneous localization and map building: closing the loop with multi-hypothesis tracking, vol. 3, 2002.8 ROS, ROS, Online. Available at: /wiki/.ions. 中文翻译MAINBOT在广泛的工业领域用来检查和维修的移动机器人I. Maurtuaa , L. Susperregia, A. Fernndeza, C. Tuboa , C. Perezb, J. Rodrguezc, T.Felschd, M. Ghrissie内容摘要:MAINBOT项目是用来研发服务型机器人应用程序在广泛的工业设备领域在水平方向(落地机器人)和在垂直方向上(爬壁机器人)自动执行检查任务。MAINBOT项目旨在使用已经可用的机器人解决方案来部署创新系统从而实现工业目标:来提供一个通过自动机器人帮助在并联点中测量多个物理参数,能够导航和攀爬具体结构,处理传感器或特殊的非破坏行检测设备。MAINBOT项目将会在两个太阳能发电厂(圆柱-抛物线型收集者和中心塔)证实该解决方案,要求从移动操作的主要是扩展环境的可变性的观点上,安全要求等。目标是再通过提高观察的步骤和技术上来提高安装效率。机器人的功能在不同等级上的开发研究:(1)仿真:现实的测试环境创造出来是为了证实为了机器人项目而研发的算法,传感器和应用环境是合适的。(2)自主导航:混合定位和规划算法是为了操控庞大的扩展系统。(3)操作:机器人手臂的运动计划和控制算法来为通过精确度和防撞技术的位置传感设备来研发。(4)互用性:来整合非均匀性系统的机制包含了机器人操作,来自给最终用户维护计划的第三方检测设备。(5)非破坏性检测:基于涡流和温度记录,检测算法的研发是为了提供自动检验能力的机器人。 1介绍:主要机器人项目是用来研发服务型机器人应用程序在广泛的工业设备领域在水平方向和在垂直方向上自动执行检查任务。主要机器人项目旨在使用已经可用的机器人解决方案来部署创新系统从而实现工业目标:来提供一个通过自动机器人帮助在并联点中测量多个物理参数,能够导航和攀爬具体结构,处理传感器或特殊的非破坏行检测设备。术语:PT: 槽型抛物面集热器CR: 中央接收器SCA: 组装太阳能集热器SCE: 太阳能集热器元素NDT: 无损检测HTF: 热传导流体FA: 功能分析FMEA:失效模式影响分析ROS: 机器人操控系统GPS: 全球卫星定位导航系统INU: 惯性导航单元定义这种类型的工业的需求已经被选择的两个验证场景是:一个是抛物线贯穿收集器技术(PT)太阳能发电厂(50mw,七个小时的储存)和一个中央接受技术(CR)太阳能发电厂(19.9Mw,15个小时的储存)如图所示。两个工厂依据大量的元素检查,元素的大小,工作环境等等同时造成严峻的挑战。一些数字能够在大量的工厂提出一个重要问题的观点。1.400000个镜子,共有1200000平方米的抛物线贯穿收集器2.2650定日镜(10米高和11米宽)在中央接受技术中有35个镜子,大约90千米的吸收管在抛物线贯穿收集器被检查。3.塔140米,120米接收管11米高度。 a b图1 用来校验的太阳能装置(a)槽型抛物面集热器(b)太阳能塔基于一组选择标准(积极影响、新奇、可行性、风险)的几个操作,被机器人自动执行,选择是:普遍存在的触感:这个工厂的反射率指数是为了决定清洁和维护活动的一个重要参数。反射率的测量是由一个特殊目的传感器、反射计所反应出来的。一个全球工厂的反射率指数在日光领域选择性反射使用特殊的测量方法在统计学上被获得。地面机器人在SCE的特殊地点放置一个反射计,触摸反射镜并记录数据。泄露检测:在PT工厂中,热传导流体(HTF)在很高的温度下在吸收管内循环(约390摄氏度)。HTF泄露是令人难过的,因为石油应该被代替并且这项操作需要将SCE的服务在两到三天内推出。机器人使用温度记录检查技术执行检测。在垂直结构内的表面缺陷检测:在CR工厂中接收器位于加热熔融盐塔的顶部。这个接收器是由几个镶嵌管道组成的多面体结构。接收器的管道拥有外部涂层以便于改善辐射吸收。这种涂层厚度是微米级的。爬壁机器人在面板顶端进行涡流探伤,通过测量涂层的厚度来评估涂层的状态。此外,视觉相机记录外表面来检测损失涂层在水平结构内的表面缺陷检测:据估计,百分之二的镜子每年必须替换,并且百分之0.83的镜子是会被永久破坏的。地面机器人在早期检测时在工厂寻找破碎的镜子有利于提高效率,另外,地面机器人夜间巡逻和使用温度记录检查由于识别真空的吸收管的任何形式的损失。内部缺陷的检测:腐蚀和内部缺陷的检测在一个动力装置的许多部件中是必须的。爬行机器人将在收集管道内测试这种可能存在的缺陷。本文结构如下,文章第二节展示了设计要求和曾经用过的在项目中的机器人。文章第三节详细解释所有的研发用来赋予MAINBOT自动执行维护能力的基本技术。文章第四节解释了不同的挑选出来用于在工业领域检测退化问题的无损检测方法。文章最后第五节提供了主要的结论和未来的工作。2.机器人的设计在MAINBOT项目中新机器人平台中重新设计考虑在应用程序场景中定义的所有要求并且使用先前存在的平台作为一个新的起点。表一展示了所考虑的要求的总结。 表1:要求总结任务应用机器人要求检查要求普遍存在的触觉落地机器人(1)精密定位来达到特殊要求。(2)定位(SCE 15分,33 SCA)(3)障碍回避策略(1)联机检查。(2)精密传感器配置在表面顶端(3)轨迹(达到点,线性循环,平台)渗漏量爬行机器人和落地机器人(1)定位(关节,视野传感器)。(2)轨迹线(延伸关节,线性循环,平台) (3)障碍回避策略(1)联机检查。(2)联立检查(视觉伺服)表面缺陷爬壁机器人和落地机器人(1)通向垂直领域和自动移动和固定对象的方法。(2)非接触传感器操作。(3)接触传感器操作(1)通向垂直领域和自动移动和固定对象的方法。(2)非接触传感器操作。(3)接触传感器操作内部缺陷爬壁机器人(1)基于接触传感器操作。(2)定位(视觉传感器)。(1)联机检测。(2)沿着表面(接收器管道)的非破坏性传感器的精确导向。此外,可靠性,可用性,可维护性和安全性方法,应用与机器人设计,已经被采用。基于确认的场景一些分析已经被展现,硬件和软件的水平已经被慎重考虑过的。功能分析:功能分析是一个自上而下的对于机器人各种各样类型的结构化和系统化的评估。它是一种运用定性的方法来识别和分析系统和相关的所有与集成到每一个机器人中的系统与子系统相关的功能。做这个的目的是为了保证机器人不会引起或导致一些重大的人身伤害和财产损失。这种方法与设计相结合。失效模式影响分析方法是通过他们的后果,已经存在的东西和提出的措施获得了潜在失效模式的列表。可靠性和可维护性分析:这个目标是计算和预测一个机器人在它的设计过程不同阶段中的可靠性。一旦每个元素的可靠性和可维护性的分布规律已经被计算好,模拟就会被用来计算整个机器人的可用性。来评估形同的可用性意味着平均故障间隔时间和平均修复时间都会被考虑在内。结合可靠性框图和蒙特卡罗模拟允许当有复杂配置(基于时间的分配)时进行可靠性评估。基于这些需求地面机器人和垂面机器人已经被重新设计。2.1地面机器人的重新设计如图二中所示,落地机器人是建立在适用于越野导航的严格机械机构。地面机器人是用电驱动的,4轮驱动/4车轮驾驶驱动的移动机器人基地并且具有很好的清理清扫能力,为当人类具有最小危险系数时的侦查、监视和安全操作提供一个真正的解决方案。它使用一个具有吸收由地面发出的高低频率振动的能力的一个液压气动悬浮器。图2 落地机器人描述2.2爬行/垂直机器人的重新设计MAINBOT的方法是为了设计具有为大型工厂维护能力的爬行机器人而不是凑合使用和适应现有机器人设计。爬墙机器人的物理结构在图3中被展示出来。1.运动系统(XYZ移动系统)2汽车车架(底盘和覆盖物)3水平缓冲器4垂直传感器5外部接触单元6内部接触单元7NDT传感器8照相机a b c1机器人控制盒 2真空压缩机 3真空罐图3 爬壁机器人(a)主视图(b)后视图(c)实物模型3.自主导航和操作其目的是赋予机器人在非结构化的环境中自主导航和操作的能力。3.1模拟3D仿真是一种为在研发新的模型之前探索假设的情形和提供有价值的信息的一种极为强大的工具。使用3D仿真机器人的好处来自于:不依赖与硬件和降低许多成本的对机器人应用的研发能力。MAINBOT真实的测试环境已经被创造出来用来证实算法来研发可用的机器人,传感器和应用程序环境。一个3D仿真被用来评估应用和对地面移动基地和在维护活动中的操作者的实施。像摩尔斯,韦伯特,乌萨尔,最后露台等艺术仿真环境在分析状态后所选中。使用不同的CAD文件代表环境(有效的场景),地面机器人和手臂被机器人制造商提供,为一个如图4所示的完整的地面机器人建造了一个露台模型。 a b c图4 模拟环境;(a)落地机器人地基(b)模拟落地机器人(c)落地机械臂3.2导航集成在MAINBOT的导航算法旨在构建一个环境的代表和生成考虑维护活动的要求的机器人轨迹规划。因此,一些导航策略被考虑在内的,在一方面是为了地面导航,在另一方面是为了垂直导航。在地面机器人的场景中,为了导航,机器人需要一个提供作为地图的环境的代表。导航技术严重依赖于使用地图的类型。大部分最新定位系统使用的全球的,工作区的公制地图。但仅仅包含较小区域,全球公制地图规模和效率低下。另外,在不准确的绘制地图和测验机器人性能方面是敏感
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:上料机器人手臂结构设计(含CAD图纸和说明书)
链接地址:https://www.renrendoc.com/paper/166715213.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!