文献翻译.doc

多功能封口机的设计

收藏

资源目录
跳过导航链接。
多功能封口机的设计.zip
多功能封口机的设计【含CAD图纸】
链轮4.dwg---(点击预览)
链轮3.dwg---(点击预览)
链轮2.dwg---(点击预览)
链轮1.dwg---(点击预览)
轴3.dwg---(点击预览)
轴2.dwg---(点击预览)
轴1.dwg---(点击预览)
说明书正文.docx---(点击预览)
草图 多功能包装机.dwg---(点击预览)
端盖3.dwg---(点击预览)
端盖2.dwg---(点击预览)
端盖1.dwg---(点击预览)
直齿圆柱齿轮齿轮.dwg---(点击预览)
目录摘要.doc---(点击预览)
横封辊.dwg---(点击预览)
文献翻译(毛奕).doc---(点击预览)
文献综述(毛奕).docx---(点击预览)
开题报告(毛奕).doc---(点击预览)
导辊心轴.dwg---(点击预览)
字数统计.gif---(点击预览)
多功能封口机结构设计.docx---(点击预览)
填料斗.dwg---(点击预览)
任务书(毛奕).doc---(点击预览)
1多功能包装机装配图.dwg---(点击预览)
外文翻译
模板
资料参考
压缩包内文档预览:(预览前20页/共23页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:171730354    类型:共享资源    大小:12.64MB    格式:ZIP    上传时间:2021-12-04 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
多功能 封口机 设计
资源描述:

喜欢这套资料就充值下载吧。资源目录里展示的都可在线预览哦。下载后都有,请放心下载,文件全都包含在内,有疑问咨询QQ:414951605 或 1304139763

内容简介:
重 庆 理 工 大 学文 献 翻 译二级学院 重庆汽车学院 班 级 0840205 学生姓名 钱晓军 学 号 10804020519译 文 要 求1、译文内容必须与课题(或专业)内容相关,并需注明详细出处。2、外文翻译译文不少于2000字;外文参考资料阅读量至少3篇(相当于10万外文字符以上)。3、译文原文(或复印件)应附在译文后备查。 译 文 评 阅导师评语(应根据学校“译文要求”,对学生外文翻译的准确性、翻译数量以及译文的文字表述情况等作具体的评价) 指导教师: 年 月 日曲板和金属板双楔系统折弯机摘要 一个折弯机或其它机械钣金或薄板弯曲金属、由一个框架、一个安装在框架上的基座,和一个安装在框架上的可移动连杆。移动的连杆装配于一个相对金属床向弯板料和板材被安置在连杆和机床之间包括第一和第二楔子,框架的第二个方向,朝着离床弯曲操作的连杆。第一和第二的斜坡表面相对楔子装配一个执行机构。第一和第二的楔子是驱动动力分配挂钩,以平衡整个连杆。 一个游标尺水平安装通常装配在连杆和楔子上、允许设置一个数值范围控制切换组件的方式来控制连杆运动向下所需的点。折弯机可以装配一个旋转机械装置使连杆绕相对于机座位置在选定的连杆角相对的机床上的轴转动。说明书本发明领域 本发明涉及通过一个楔型激活系统使用移动的连杆和一个机床压在一起来弯曲金属板或板弯曲板和金属板的机械装置。本发明的背景与总结在以前的技术中,重型机器的金属板弯曲和金属板已经使用了单个楔子的驱动系统来提供压力和切削力。但是运用之前技术的机械结构没有提供了本发明的优点。本发明的特点是折弯机,或其它类似重型的板料弯曲或金属板弯曲机器。本发明包括一个框架、一个安装在框架上的机座,和一个安装在框架上的可移动连杆。连杆有一个较低水平较低的边缘,其中有一个凹模,其中有一个横向延伸的V形槽接口齿冲。在移动连杆和机座上,弯曲的金属之间有一个装配有倾斜的坡道表面和滑动表面之间移动的第一个和第二个楔子。沿斜面的楔形的运动引起的坡道走向机座。双楔驱动执行机构,定位之间的两楔子。执行机构可以是一个单一的单位,或双单元。 驱动执行器连接楔子,他们在第一和第二方向上移动。楔子运动适用于力,以使其从机座上移动到连杆。由于执行机构的定位是两者之间的楔子,楔子应用于连杆的力量被作用于连杆的两个末端从而作用力均匀分布于连杆上。 二个楔子通过这种方式互相连接例如链接板材,因此一个楔子的运动转移力量到第二个楔子和第一个楔子移动相同的距离。两个楔子的联动提供连杆的啮合冲压的边缘水平V形凹模槽要保持平行,并且提供力量均匀施加给连杆的末端以及整个连杆。 平衡横跨连杆的力量使得均匀和笔直的弯曲金属板和板材被安置在连杆和床身之间。 在一个实施例中致动器包括一对电源,例如液压或气压缸,其有不同的电源输出。电源的每一个可有一个驱动部件,其从推动地是与一个各自的楔子有关的它的外部的端延伸的。此双楔紧作用横跨压头进一步允许一个平衡力。随着一次两重政权操作,动力的变化形态可成为更容易应用于压头的。例如汽缸中的一个可在操作的某阶段被使用这些快速地移动压头到与金属板一起的积极参与或在弯曲之前的板,然后当更多力更多力被期望应用于弯曲板或片的时候,两个汽缸可被使用。 在一个实施例中一个单汽缸组件可和连接到压头或构架的汽缸一起使用,用从汽缸延伸的驱动部件移动楔子中的一个。连接楔子的那些月牙板夹板使两个楔子被单个致动器移动。在另一个实施例中例如一个单个液压或气压缸的致动器可以有从它的相对两端延伸的传动杆,以被连接到楔子,以移动楔子,以使压头移向和远离用于弯曲操作的床。与致动器一起,是否这是双汽缸布置或单汽缸设置,在两个楔子之间的,横跨压头的力的均匀分布发生,一个密实结构也被提供。系统因而允许由与床有关的压头的插入运动提供机械利益的应用。在楔子之间的致动器的配置进一步关于机器的最后允许缺乏阻塞。 安装到楔子的各方的导板在滑动期间使楔子走上正轨。侧板有导向器由此延伸其接触压头和滑动部件,以提供稳定的和光滑的运动,与装在接合部件上的润滑剂一起。 本发明进一步提供一个成比例的装置,其调整压头的运动,其包括一个安装到组件的组件,其与压头一起例如在优选实施例中的月牙板夹板上移动。它有与楔形组件有关的另一组件,例如被安装在优选实施例中的月牙板夹板上,在优选实施例中的组件是其一个凸轮。装置,用于进一步调整运动,包括一个开关,其与压头有关,其有装置,以与凸轮相互作用例如通过一个凸轮臂。凸轮可绊倒开关,以控制向下运动或压头的贯入深度进入床。用于调整的装置包括一个刻度组件,其有一个与楔形组件有关的规模,例如在凸轮上。凸盘秤朝向床可相对于压头的渗透的最深处被调整。另一规模组件通常水平地相对于楔形组件延伸,例如水平地在月牙板夹板上。凸盘秤可被调整并相对于其它规模组件被设置朝向床因而设置压头的向下运动的最深处。那些二进制记数法组件可形成一个游标尺设置在设置中允许大的准确度向下渗透的位置。第二凸轮可与一个开关相互作用阻止压头在与片或板一起的接触前一会儿。第三个凸轮可激活一个开关,以限制压头的向上的旅行。 在另一个实施例中,压弯机设置有用于枢轴的转轴装置压头围绕与上述床有关的枢轴线。一个螺栓通过第二楔子,以为第二楔子接通它的相关的导板,和月牙板夹板,如果提供。转轴装置包括一个安装组件,其用于调整地将所述第一斜坡部件安装到上述构架,以便所述第一斜坡部件的水平位置可有选择地在上述压头的运动前设置。在第一斜坡部件的第一构架和一个外表面之间,转轴装置进一步包括一个线性运动装置可操作地连接,以移动朝向第二斜坡部件和在第二方向中远离第二斜坡部件的在一个第一方向中的第一斜坡部件。因而,与第二斜坡部件有关的第一斜坡部件的运动相对于第一楔子使第一斜坡部件移动并引起压头到围绕枢轴线的枢轴。安装组件优选地包括一个水平构件,第一斜坡部件具有在它的角的表面的对面的基本上水平面。第一斜坡部件通过一个相互配合的槽和tennon设置滑动地是安装到安装组件的水平构件的。那些线性运动装置优选地是一个螺栓,其通过一条腿,其平行于第一斜坡部件的外表面延伸。螺栓被连接到第一斜坡部件的外表面,以便它可以推并拉第一斜坡部件当它被旋转时。 折弯机或其余类似本发明的折弯试验机,提供不同于以前的优于现有技术之处的成果。附图的描述图1图1是显示一台屈挠试验机实施例的一个正立面图,其用于以一台压弯机的形式弯曲片和金属板,具有在向上的位置展示的压头; 图2 图9图2是图1的机器的右端点视图;图3图3是图1的机器的前视图,用前部的月牙板夹板和开关控制标签,其在短划线展示的,不显示那些前部的导板和后方通信线路板;图4图4是机器的前视图,与在短划线展示的和不显示为以图3的相同部件一起,与比图1和3的在一个更低位置展示的压头一起;图5 图6图5是机器的前视图,与在短划线展示的和不显示为以图3的相同部件一起,与在它的用于弯曲金属板和板的底部位置展示的压头一起;图6是在它的图1和3的位置的机器的俯视图; 图7 图8图7是一个剖视,其承担线7-7图1;图8是承担线8的一个剖视-图6的8;图9是承担线9的一个剖视-图3的9。优选实例描述综述首先给出的是一个总体描述一个发明的第一个实施方式。首先谈及对在图1-12展示的实施例,一台压弯机机器20,用于弯曲片和金属板,具有一个平稳的构架22,安装到构架22的一张床24,和安装到构架22的一个压头26,以移向和远离床24。一个组件28(图3)为移动压头26相对于床24弯片和金属的板包括第一及第二滑动三角土楔32和34,保护压头26的顶部的第一及第二滑板滑床板36和38,和第一及第二铲煤板40和42,其保护在那些滑板滑床板36和38上方的构架22的。在滑板滑床板36和斜坡40之间的楔子32滑动,而同时在滑板滑床板38和斜坡42之间的楔子34滑动。装置48,用于起动楔子运动,包括不同尺寸被证明是的第一及第二液压缸50和52。汽缸50和52具有向内地延伸部件54和56,其通过一个联接板62的58和60(图6)的基本东西安装。当通过一压头26的中上层端的焊接点的时候,板62被固定。滑动的那些汽缸50和52动力驱动部件68和70,其从汽缸50和52的外端伸出。驱动部件68和70被连接到具有基本东西75的传动杆72和74。传动杆72和74是依次推动地连接到楔子32和34的。那些杆72和74在一个第一方向中可以因而滑动那些楔子32和34在图1的左方和3-5,以移动朝向床24的压头26,以弯曲一个金属板或板于此之间找到,以在朝向图1和3-5的权利的第二方向中,移动压头26远离床24,以允许移动或弯曲的片或板的重定位。因而,当那些楔子32和34通过那些汽缸50和52被移向左侧的时候,压头26通过间接触被移向床24或那些楔子32和34的合作与那些斜坡40和42一起。一对90和92(图6)的前部和后部导板分别被安装在正面和楔子32的后部,而同时前部和后部导板96和98也安装到正面的和楔子34的后部,分别。那些楔子32和34的那些导板90,92,96和98界限旅行在它们的各自的滑板滑床板36和38和斜坡40和42。前部和后部连杆板104和106被固定到导板96和98通过基本东西108和110经由那里的经过和通过楔子32和34。那些月牙板夹板104和106允许力那移动通过汽缸50的楔子32,以被转移到楔子34,也从汽缸52至楔子34允许力的转移,以被转移到楔子32。月牙板夹板104和106因而允许一个相等的施力楔子32和34的每一个,以及通过那些楔子32和34的相等的施力允许到压头26末端。这提供维持压头26的下边带,与床24的上边缘平行的,和为一个平的施力通过压头26针对片或被弯曲的金属的板。一个比例尺缩放组件107(图10和11)包括安装在月牙板夹板104上的通常水平地延伸的刻度片107a,其与一通常水平地相应的延伸的在凸轮盘107c上的规模107b相互作用。凸轮盘107c可调整地与月牙板夹板104有关的组合。凸轮盘107d和107e(图1)也是调整地安装到月牙板夹板104的。安装到压头26的前面的是三开关107f,107g,107h,每个有凸轮臂109,带有滚子,其分别与凸轮盘107c,107d和107e的表面相互作用。凸轮盘107c和开关107f相对于床28控制压头26的向下运动。在凸轮107c上的刻度片107a和107b上的这样的组件具有随意地可以彼此对齐的垂直的记号,以便可调凸轮107c可被移向定在预期的点,以阻止在向下运动的预期的点的压头26。图1-12实例的更多详细说明 一在图1-12展示的实施例的更多详细说明现在将被给。构架22包括每个具有以图2的用于直立112的一显示为114和116的上下C状的开口的一对立杆111和112。床24包括具有它的内部的一个垂直的金属板调整地安装到每个直立111和112的前沿的在C状的开口116下。床24充当在压过程中的下颚,有一个阴模,带有在它的上端中的一个V型槽120。压头26包括一个上下轴承垂直的颚夹板124,其中一个下齿冲床126被附上。齿部冲床126具有一个水平下边带127。压头板124的上边缘是焊在槽楔滑块板36和38的下面的因而安装压头26移动组件28。当那些液压缸50和52被激活,以移动描述的那些驱动部件68和70和依旧往返滑动那些楔子32和34的传动杆72和74的时候,压头板126和齿部冲床126依靠那些滑板滑床板36和38的压头板126连接被上下移动。当通过焊接的时候,压头板126的正面具有保护它的金属开关安装板130。那些开关107f,107g和107h被安装在转辙器垫板130的顶部。构架22包括固定位置楔子板150和152,其中组件28的上部被安装。在直立111和112(图2)的构架中的矩形槽口中的固定楔子板150和152合适的上端在C状的开口114的顶部上方找到,由焊接担保的。固定楔子150和152分别具有它们的更低斜棱,其由焊对有倾向的斜坡40和42的顶面担保的。那些前部的导板90和96,如同在图7和8中更清楚地看到,具有向内地上部延伸焊在其内部的边缘156。后面的导板92和98同样具有焊在其内部的边缘158。一对螺栓159是螺纹向下的通过边缘156和158的每一个,具有保护调节板160和162的更低螺栓端。那些板160和162具有塑料制品的平面三明治片166和有在其向下的面开口之间的低摩擦系数的金属,以邻接斜坡40和42的顶面。在每一前部的导板90和96以内焊在更低的,是边缘170。以图3,4,5那些前部的导板90和96不被显示,虽然图3-5确实显示由此延伸和那些板160,和更低内法兰170和与此关联的那些板178一样的那些上部内法兰156。后面的导板92和98同样具有焊在其内部的边缘172。螺栓174向上地通过那些边缘170和172是螺纹,具有保护板178和180的螺栓端。塑料制品的平面三明治片182和有一个低摩擦系数的金属在板178和180中的向上地面开口之内是邻接滑板滑床板36和38的下面。当可最好地被看到在图7中,前部的导板96与它的相关的上下边缘156和170和那些调节板160和178形式或确定一个前部的C形夹。类似地,一个后部的C形夹由其组成后导板板98与它的相关的上下边缘一起158和172和那些调节板162和180。相似的C形夹由包围楔子32的正面和背面导板90和92组成。正面和背面C形夹被调整使用螺栓159以便那些顶板160和162邻接或接触上表面斜坡40和42和那些下夹板178和180被调整使用螺栓174,以便他们和板36和38的下表面接触。沿着滑板滑床板36和38的下面的C形夹板178和180滑动,而同时沿着斜坡40和42的上表面的上部C形夹板160和162滑动。那些螺栓159和174允许在压力中的可调性,其被那些C形夹板160,162,178和180应用。如上所述,当那些楔子32和34通过那些汽缸50和52被移向左侧的时候,压头26通过间接触被移向床24或那些楔子32和34的合作与斜坡40和42的下面一起。当那些楔子32和34通过那些汽缸50和52被移向右的时候,压头26通过间接触向上地被移动远离床24或那些C形夹板160和162的合作与那些斜坡40和42的顶面一起。其是当楔子被移向右时,当他们沿着那些斜坡40和42的顶面乘坐时,那些C形夹顶板160和162将被迫走直线。如同可被珍视一样,因为那些主夹板178和180是可操作地连接到通过那些边缘和导板的那些顶板160和162的,当那些顶板160和162向上地走直线时,那些主夹板178和180向上地将也被走直线。因而,那些主夹板作为楔子将向上地推那些板36和38被移向右。当那些板36和38被连接到压头26时,压头26将向上地被移动。因而,本质上,那些楔子用于推夯实,那些C形夹用于拉预填。安装到压头板126的上边缘的在固定楔子150和152的每一个的左方,从图1的角度,3-6和12,是阻尼组件190和192的对。那些组件190和192是相同的,因此相同的基准数用于相似的部件。那些组件190和192具有一对三角的凹字楔安装板194。如同为在放大的图12附图中的组件190更清楚地看到一样,每一对板194作为通过焊对板196分别被固定,那依次是焊在压头板124的顶部的。交叉凹字楔支承板200具有它们的外面,其当通过三角片194的最高的垂直的边缘的焊接的时候固定。一对调节螺钉204贯穿于支承板200和熊进入在凹字楔板210中的部分的孔以便调整地安装板210。轴承材料214的垫被安装在那些外表面固定楔子150和152,以邻接那些板210的内部。如同将在下面被解释一样,机器20被操作与板210有关的轴承材料214滑动的时候。那些前述的凹字楔垫和板210和214,形成一个滑动接口,其阻止力从被转移到机器20的构架22的压头的水平运动,以减少机器零件的消耗,和外貌损伤。那些汽缸50和52不同的直径被证明是。例如,与一50吨一起压,汽缸52能够是一2.5英寸(6.35厘米)直径汽缸,和汽缸52能够是一4英寸(10.16厘米)直径汽缸。随着此结合,2.5英寸(6.35厘米)汽缸52用于从图3位置至图4位置的压头26的快的进展能够被采用,其恰好在板或片的弯曲之前。从那点,那些汽缸50和52两个能够被使用,用于弯曲片或板。汽缸尺寸的许多变化可被使用,那些汽缸50和52能够被选择具有相同尺寸。那些汽缸50和52被水力管226(图1)馈送,其被连接到一个液压源228,同样本领域已知的。虽然一个液压源被说明,一个气体动力源和气压缸也能被使用,有螺母和空程离合器的旋转螺丝钉可以被采用,以移动每一楔子,当可以其他合适的动力和驱动装置。那些基本东西108和110,如图7和8所示,通过前部和后部月牙板夹板104和106的每一个延伸,通过那些前部和后部导板90和92,96和98分别,通过那些各自的楔子32和34。如图7所示,用于楔子34和导板96和98,那些侧板90和92,96和98,针对各自的楔子32和34的各方整洁地合适的。这阻止那些楔子32和34偷偷跑掉从接合与所有表面一起它们的各自的滑动36和38和斜坡40和42。图7和8也显示每一楔子32和34具有一个上部凹部,其接收塑料制品的平面三明治片240和有一个低摩擦系数的金属,和一个更低凹部,其接收喜欢物质的平面三明治片242。那些片240和242帮助减少在那些楔子和它们的邻近的滑动和斜坡之间的磨擦,减少消耗,提供平滑器操作。可选地,滚子可代替了片240和242。通过在设计和制造阶段期间改变那些楔子32和34的倾斜角,应用于压头的总力可以被增加或减少。那些传动杆72和74,关于杆72以图9如图示的,具有其在楔子32和34中的长方形槽之内延伸,其通过焊接可以被固定到楔子的端。更详细地现在谈及对比例尺缩放组件107,凸轮盘107c,107d和107e的每一个,如同被在图10和11的放大图展示的凸轮盘107c例证一样,有一水平有一个左有倾向的下边带252的更低中心边缘250和对其各方的一个权利斜棱254。如图10和11为凸轮盘107c所示的,那些凸轮盘107c,107d和107e与边缘260和262一起每个都具有一个槽钢截面在月牙板夹板104每一边延伸。一个调整螺266通过施压于月牙板夹板104的表面的前部的边缘260延伸而且因此保持在位置的凸轮盘107c。刻度片107a已经开缝于端接收螺栓268那拧紧进入在月牙板夹板104中的孔,以持有向那里的规模107a。看图10,在凸轮盘107c上的规模107b的垂直的标记和在规模107a上的垂直的标记是空间,以允许在游标尺方式中的二进制记数法组件的定位。在所示的实施例中以图1-12,相对于压头26的月牙板夹板104(或楔子32和34)的旅行的比是大约3.2到1。在规模组件107a和107b上的垂直的标记是根据这样的比的空间。如前所述,左侧开关107f相对于床24的阴模的水平V型槽120控制向下齿部冲床126的更低水平边缘127的渗透的点。因而,通过设置相对于规模107a的规模107b的位置,水平压头齿部冲头镶块127的更低延伸的点被控制。为规模107a显示的横尺度设置和规模107b允许大的准确度比与一个垂直地延伸的规模一起,自规模设置利用相对于压头26的月牙板夹板104的运动的大的比以来。这允许点的准确的和准确度类似的控制或向下凸轮26的渗透的程度。其它开关107g和107h也行动对控制滑枕运动。在与片一起的接触或被弯曲的板前一会儿的有开关107g停顿点的臂的凸轮盘107d(方法凸轮)的接合压头26的运动。有开关107h的臂的凸轮盘107e的接合激活那开关,以阻止压头26的向上的旅行。合适的电路为那些开关107f,107g和107h接通电源228,当本领域已知的时候,通过带如前所述的开关的凸轮盘的接合激活并无效电源228。现在转到对在图13展示的第二实施例的描写,一台压弯机机器20具有一个单个液压缸300,与图1-12的双液压缸设置形成对照。图13实施例显示一个联接板302当通过焊对压头26的上边缘的时候固定。汽缸300具有从它的右端点延伸的一个部件304,其作为通过联接板302的一个螺母及螺栓306被固定。在汽缸300a驱动部件310滑行地延伸至由一个螺母及螺栓312连接对一个传动杆314。如同为图1-12实施例演示一样,传动杆314以同样的方式依次是连接到左边楔子32的。那些楔子32和34以同样的方式推动地是互相连接的楔子32和34由月牙板夹板连接在图1-12实施例中作为104和106说明。以图13前部的月牙板夹板104的轮廓在短划线展示,而同时后方通信线路板106作为月牙板夹板104具有相同的位置。单个液压缸300驱动部件310和传动杆312,以移动往返的楔子32,与连杆一起通过那些月牙板夹板104和106也打入式造斜楔34对楔子32运动往返等距的。那些楔子32和34滑动沿着滑动36和38和斜坡40和42以同样的方式如同为图1-12实施例描述一样,以移动压头26朝向和远离床24。那些月牙板夹板104和106,如同图1-12实施例一样,允许相等的施力到压头26末端,相等的力允许横跨在弯曲期间的压头齿部边缘127。以图13的其他组件被给质数,其与用于以图1-12的组件的数量相对应的。图13单汽缸实施例在相对于压头运用的动力的变化更少地被需要的地方在位置中可成为优选的。图14修改显示一台压弯机机器20,其中一个单个液压缸400被使用。压头26和床24的位置从图1-12的实施例的被颠倒。压头26被显示在床24下定位。向上地弯金属板和板的运动组件28行为,以驱动压头26,其在压头26和床24之间的,以移动压头26向下的远离床24,以允许移动或那些弯曲的片和板的重定位。汽缸400具有它的端,其保护压头26通过一对尖角括号402持有在固定压头26的关系中的汽缸400的下面的。从汽缸400的两端延伸的是传动杆406和408。杆406的最后是螺纹,其进入楔子32推动地移动楔子32的内部的端。在一个杆408的最后上,杆408的外端通过楔子34延伸由一个螺栓410螺纹固定。环414在点其中的那些传动杆406和408周围可成为螺纹他们延伸进入楔子32和34。图15和16显示一台压弯机机器20其中压头26可被移动或与构架22把一个倾斜角给与压头26有关的枢轴以便压头26枢轴将与床24有关的。一个L形的部件500在楔子板150上方被固定到直立111构架22。L部件500具有一个细长第一支柱502,其沿着楔子板150和延伸向下的一条短引线504,与楔子板150的外表面平行的的顶部延伸。一个螺栓506通过第一个腿502进入直立111将L部件固定到构架22上。如图17所示,腿502具有在它的下表面中的燕尼服曲形槽508。楔子板150在它的上表面上具有一个相应的燕尼服成形的tennon510,其滑行地是容纳在槽508中的。因而,然而那些楔子板150,150和150图1-14的实施例是被固定到压弯机机器的构架,楔子板150的可相对于构架22沿着与压头26平行的一条路径被移动和其由tennon510和槽508定义。一个螺栓孔512通过L部件的第二回合504延伸,一个螺栓孔514形成于外表面楔子板150,那些螺栓孔512和514彼此是同轴的。一个螺栓516通过L部件500的螺栓孔512,以容纳在楔子板150的螺栓孔514中。以图15,压头26被证明是一般与床24平行的。正如大家从比较图15和16中所看到的,当螺栓516被旋转的时候,螺栓516将贯穿于L部件500的腿504,以推动到右,如图15所示的楔子板150。当楔子板150被移向右,如图16所示,以便楔子板150的外表面与滑板滑床板36的外表面一起是不再共平面的时候。当移动到右时,楔子板150将与楔子32相互作用,引起压头到枢轴,其围绕螺栓110在压头26的对面。这在压的左边将在压头26和床24之间缩小差距,但是在压的右边的基本上不变的压头和床之间留下间隔。当压头26被设置为一个预期的角,压弯机20的操作与图1-12的压弯机20的操作等同的时候。操作运动组件28与被楔子传输的向下压力的如上所述的那和变速箱等同,将在两个楔子之间被传输,如上所述,以横跨压头维持一个等压力。不过,因为压头26的左边低于压头的右边,关于图15和16,压头的齿部冲床将更向前进入床的模比在其它上的一侧。这将使得压弯机机器,其比如果压弯机机器被限制在一种平行的关系,这会是另外能做的用于做在金属片中的更多类型弯,其在压头26和床24之间。例如,压弯机机器将使渐弱类型弯曲,当床和压头是平行的时候其不可以被做。在图18展示的压弯机机器20和19类似在图14展示的压弯机机器20。在压制动踏板控制器20中压头26的位置和床24从图15-16的实施例的被颠倒。在床下,压头26被显示定位24。那些运动组件28行为驱动向上地弯金属板和在压头26之间的板和床24的压头26,以移动压头26向下的远离床24,以允许移动或那些弯曲的片和plates.The压弯机机器20的重定位设置有L形的部件500,以相对于床在螺栓110周围使得压头26的枢轴24。如图18所示,压头26和床24在一种平行的关系和图19展示,压头枢轴部件500的螺栓516被旋转,以移动横向相对于构架22.As的楔子板150,其在图18和19中看到,楔子34稍微更改,包括一个部分598,其超出构架的外表面22延伸。34楔子的此延伸。作为楔子34被提供用来容纳楔子34的自左向右运动,通过运动组件28被移向右(关于图18和19)。如同可以图20被看到一样,构架22从图1-12的构架22是稍微不同。构架22包括停留在四英尺602上的一个底板600。一对直立111和112从基座600的对面向上地延伸。基座600包括左右部件604,于其上,直立111和112站。正面和背面叉形杆件606在左右部件604下在左右两边部件604之间延伸,以直立111和112连接。第602那些脚被安装在那些叉形杆件606的下面。直立111和112是优选地正确的三角的并有一个通常垂直的前沿。一个后导板板610被安装,当通过焊接,对每一直立111和112和一个前部的导板612的前沿从后导板板610在前部从基座600空间向上地延伸。那些正面和背面导板612和610三明治压头26和床24导向26压头的上下向运动。与那些导板90,92,96不同,和图1-12的98压弯机20,那些导板610和612延伸压弯机的高度。换言之,他们从基座600的顶部伸出到压头的顶部26。那些正面和背面板612和610被那些螺栓108互连,其通过压头枢轴部件500的臂502延伸。从转轴装置500的在压弯机机器的对面的那些板610和612由螺栓连接110。因为那些板610和612可操作地是连接到那些楔子板150和152的,那些板610和612将转移力,其由和图1-12的那些正面和背面导板96和98同样的方法的运动组件28的汽缸的每一个产生的。因而,当压头26与床平行24的时候,横跨压头26应用的压力将不变和在压头的长度上相等。如上所述,当压头是枢轴的时候,其与通过压头枢轴组件500的床有关的,冲床齿部更向前进入模比在其它上的一端,导致一渐弱类型弯。驱动机构28的汽缸的活塞杆72的楔子板150的连接在图21展示。活塞杆72在它的端具有一阻碍620,带有一个向内地延伸的槽622。楔子板150具有一个手指624,其由此延伸,以容纳在槽622中。一个螺母及螺栓75通过阻碍620和楔块手指624,以固定活塞杆或传动轴72的楔块150。在图1-12的实施例中,斜坡40和42被显示安装到构架的,而同时那些水平滑动36和38被显示安装到压头的。这被认为是更适于图1-12实施例的,因为大的便利性和在安装压头板124的水平上边缘的那些水平滑动36和38方面缓和。不过,如果需要,斜坡能够被安装在压头,那些水平滑动能够被安装在构架上。同样在图13和14的实施例中,那些有倾向的斜坡能够被安装在压头,那些水平滑动能够被安装在构架。虽然一个液压缸设置被说明,气压缸,或其余驱动致动器,例如一个螺母和螺丝刀,能够被使用。除液压源228之外的电源、例如气动,电动机或螺线管等能够被使用。类似地,虽然一个螺栓被出示给移动楔子板150对枢轴压头26,螺栓可以被替换成任何其他线性运动装置,例如一个液压或气压缸,或一个螺母和螺丝刀。进一步,虽然螺栓516已经被证明是被拧入楔子板150的,螺栓能够被连接到楔子板150在任何其他常规的方式中,例如利用在楔子板的外表面上的连接器,其会允许螺栓旋转移动第一楔子板朝向和远离第二楔子板。对那些显而易见不同的其他修改,具有普通的技能,在不脱离本发明的精神的情况下本领域中可是为了优选实施例的上述的说明书,它仅限制于以下要求。Machine for bending sheet and plate metal through dual wedge systemAbstractA press brake, or other machine for bending sheet metal or plate metal, comprises a frame, a bed mounted to the frame, and a ram movably mounted to the frame. An assembly for moving the ram relative to the bed to bend sheets and plates of metal positioned between the ram and bed comprises first and second wedges, and first and second inclined ramp surfaces that the wedges slide relative to when moving in first and second directions relative to the frame to move the ram toward and away from the bed for bending operations. The assembly has an actuator which moves the first and second wedges relative to the ramp surfaces. The first and second wedges are drivingly linked to balance distribution of force across the ram. A Vernier scale assembly is mounted generally horizontally with the ram and wedges, to allow setting a scale component to control switching means to stop downward ram movement at a desired point. The press brake can be provided with a pivoting mechanism which enables the ram to be pivoted about an axis relative to the bed to position the ram at a selected angle relative to the bed.DescriptionFIELD OF THE INVENTIONThe present invention relates to machines for bending sheet and plate metal through use of a wedge activated system to move the ram and the bed of a press together to bend the metal sheets or plates.BACKGROUND AND SUMMARY OF THE INVENTIONIn the prior art, heavy machines for bending plates and sheets of metal have used a wedge drive system to apply pressing or cutting force. However none of the prior art machines have employed structure that provides the advantages of the present invention.The present invention features a press brake, or other similar heavy machine for bending sheet metal or plate metal. The invention comprises a frame, a bed mounted to the frame, and a ram movably mounted to the frame. The ram has a lower tooth punch with a horizontal lower edge which interfaces with a female die which has a horizontally extending V-shaped slot. An assembly for moving the ram to and from the bed to bend the metal therebetween has first and second wedges which move between inclined ramp surfaces and slide surfaces. The movement of the wedge along the inclined surface causes the ramp to move toward and away from the bed. The dual wedges are driven by an actuator, positioned between the two wedges. The actuator can be a single unit, or double unit. The actuator is drivingly connected to the wedges to move them in first and second directions. The movement of the wedges applies force to the ram to cause it to move to and from the bed. Because the actuator is positioned between the two wedges, the force the wedges apply to the ram is applied to the two ends of the ram to thereby apply an even distribution of force across the ram. The two wedges are linked to each other by means such as link plates, so that the movement of one wedge transfers force to the second wedge to move it the same distance as the first wedge. The linkage of the two wedges provides for the horizontal edge of the ram tooth punch to be maintained parallel with the horizontal V-shaped slot of the female die, and provide for even distribution of force to the ends of the ram and across the ram. This balancing of force across the ram allows even and straight bending of the metal sheets and plates positioned between the ram and bed.In one embodiment the actuator comprises a pair of power sources such as hydraulic or pneumatic cylinders, which have different power outputs. Each of the power sources can have a drive member extending from its exterior end to be drivingly associated with a respective wedge. This dual wedge action further allows for a balancing force across the ram. With a dual power operation, a variation of power can be more easily applied to the ram. For example one of the cylinders can be used at a certain stage of the operation such to rapidly move the ram to close engagement with the metal sheet or plate prior to bending, and then both cylinders can be used when more force more force is desired to be applied to bend the plate or sheet.In one embodiment a single cylinder assembly can be used with the cylinder connected to the ram or frame, with a driving member extending from the cylinder to move one of the wedges. The link plates connecting the wedges cause both wedges to be moved by the single actuator. In another embodiment an actuator such as a single hydraulic or pneumatic cylinder can have a drive rod extending from each of its opposite ends to be connected to each of the wedges to move the wedges to cause the ram to move toward and away from the bed for bending operation.With the actuator, whether it be the dual cylinder arrangement or the single cylinder arrangement, positioned between the two wedges, an even distribution of force across the ram takes place, and a compact structure is also provided. The system thus allows for application of the mechanical advantage offered by the wedges in movement of the ram relative to the bed. The placement of the actuator between the wedges further allows for lack of congestion about the ends of the machine.Guide plates mounted to the sides of the wedges keep the wedges on track during sliding movement. The side plates have guide members extending therefrom which contact the ram and the slide members to provide for steady and smooth movement, with lubricant mounted within the engagement members.The present invention further provides for a scaled means for adjusting the movement of the ram, which comprises a component mounted to the assembly that moves with the ram, such as on the link plate in the preferred embodiment. It has another component associated with the wedge assembly, such as being mounted on the link plate in the preferred embodiment, which component in the preferred embodiment is a cam. The means for adjusting movement further comprises a switch that is associated with the ram which has means to interact with the cam, such as through a cam arm. The cam can trip the switch to control the downward movement or depth of penetration of the ram into the bed. The means for adjusting includes a scale assembly which has a scale associated with the wedge assembly such as on the cam. The cam scale can be adjusted relative to the depth of penetration of the ram toward the bed. Another scale component extends generally horizontally relative to the wedge assembly, such as horizontally on the link plate. The cam scale can be adjusted and set relative to the other scale component to thereby set the depth of downward movement of the ram toward the bed. The two scale components can form a Vernier Scale arrangement to allow for greater accuracy in setting the position of the downward penetration. A second cam can interact with a switch to stop the ram just before contact with the sheet or plate. A third cam can activate a switch to limit upward travel of the ram.In another embodiment, the press brake is provided with a pivoting mechanism for pivoting the ram about a pivot axis relative to said bed. A bolt passes through the second wedge to connect the second wedge to its associated guide plates, and link plates, if provided. The pivot mechanism comprises a mounting assembly for adjustably mounting said first ramp member to said frame, such that the horizontal position of said first ramp member can be selectively set prior to movement of said ram. The pivot mechanism further comprises a linear motion device operably connected between the first frame and an outer surface of the first ramp member to move the first ramp member in a first direction towards the second ramp member and in a second direction away from the second ramp member. Thus, movement of the first ramp member relative to the second ramp member causes the first ramp member to move relative to the first wedge and causes the ram to pivot about the pivot axis. The mounting assembly preferably includes a horizontal member and the first ramp member has a substantially horizontal surface opposite its angled surface. The first ramp member is slidably mounted to the horizontal member of the mounting assembly by means of an interfitting groove and tennon arrangement. The linear motion devices is preferably a bolt which passes through a leg that extends parallel to the outer surface of the first ramp member. The bolt is connected to the outer surface of the first ramp member so that it may both push and pull the first ramp member as it is rotated.The press brake or other like bending machine of the present invention thus provides advantages over the prior art not heretofore achieved.DESCRIPTION OF THE DRAWINGSFIG. 1 is a front elevational view showing an embodiment of a bending machine for bending sheet and plate metal in the form of a press brake, with the ram shown in the up position;FIG. 2 is a right end view of the machine of FIG. 1;FIG. 3 is a front elevation of the machine of FIG. 1, with the front link plate and switch control tabs shown in dashed lines, and not showing the front guide plates and rear link plate;FIG. 4 is a front elevation of the machine, with the same parts shown in dashed lines and not shown as in FIG. 3, and with the ram shown in a lower position than that of FIGS. 1 and 3;FIG. 5 is a front elevation of the machine, with the same parts shown in dashed lines and not shown as in FIG. 3, and with the ram shown in its bottom position for bending metal sheets and plates;FIGS. 6 is a top plan view of the machine in its position of FIGS. 1 and 3;FIG. 7 is a section view taken on the line 7-7 of FIG. 1,FIG. 8 is a section view taken on the line 8-8 of FIG. 6;FIG. 9 is a section view taken on the line 9-9 of FIG. 3.DESCRIPTION OF PREFERRED EMBODIMENTSGeneral DescriptionFirst a general description of a first embodiment of the invention will be given. Referring first to the embodiment shown in FIGS. 1-12, a press brake machine 20 for bending sheet and plate metal has a stationary frame 22, a bed 24 mounted to frame 22, and a ram 26 mounted to frame 22 to move toward and away from the bed 24. An assembly 28 (FIG. 3) for moving the ram 26 relative to the bed 24 to bend sheets and plates of metal comprises first and second sliding wedges 32 and 34, first and second slide plates 36 and 38 secured to the top of ram 26, and first and second ramp plates 40 and 42 secured to the frame 22 above the slide plates 36 and 38. Wedge 32 slides between the slide plate 36 and the inclined ramp 40, while wedge 34 slides between slide plate 38 and ramp 42. Means 48 for actuating wedge movement comprises first and second hydraulic cylinders 50 and 52 which are shown to be of different sizes. Cylinders 50 and 52 have inwardly extending members 54 and 56 mounted by nuts and bolts 58 and 60 (FIG. 6) to a connecting plate 62. Plate 62 is secured as by a weld to the upper middle end of ram 26. The cylinders 50 and 52 power slidable drive members 68 and 70 that extend from the outer ends of cylinders 50 and 52. Drive members 68 and 70 are connected to drive rods 72 and 74 with nuts and bolts 75. Drive rods 72 and 74 are in turn drivingly connected to wedges 32 and 34. The rods 72 and 74 can thus slide the wedges 32 and 34 in a first direction to the left of FIGS. 1 and 3-5 to move the ram 26 toward the bed 24 to bend a metal sheet or plate located therebetween, and in a second direction toward the right of FIGS. 1 and 3-5, to move ram 26 away from bed 24 to allow removal or repositioning of the bent sheet or plate. Thus, when the wedges 32 and 34 are moved to the left by the cylinders 50 and 52, the ram 26 is moved toward the bed 24 by the interengagement or cooperation of the wedges 32 and 34 with the ramps 40 and 42.A pair of front and rear guide plates 90 and 92 (FIG. 6) are mounted to the front side and backside of wedge 32, respectively, while front and rear guide plates 96 and 98 are likewise mounted to the front side and backside of wedge 34, respectively. The guide plates 90, 92, 96 and 98 confine travel of the wedges 32 and 34 between their respective slide plates 36 and 38 and ramps 40 and 42. Front and rear connecting link plates 104 and 106 are secured to guide plates 96 and 98 by nuts and bolts 108 and 110 passing therethrough and through wedges 32 and 34. The link plates 104 and 106 allow the force that moves wedge 32 by cylinder 50 to be transferred to wedge 34, and likewise allows the transfer of force from cylinder 52 to wedge 34 to be transferred to wedge 32. Link plates 104 and 106 thus allow an equal application of force to each of the wedges 32 and 34, and thus an equal application of force by the wedges 32 and 34 to the ends of the ram 26. This provides for maintaining the lower edge of the ram 26 parallel with the upper edge of the bed 24, and for an even application of force by ram 26 against the sheet or plate of metal that is bent.A scale adjustment assembly 107 (FIGS. 10 and 11) comprises a generally horizontally extending scale plate 107a mounted on link plate 104, which interacts with a corresponding generally horizontally extending scale 107b on cam plate 107c. Cam plate 107c can be adjustably set relative to link plate 104. Cam plates 107d and 107e (FIG. 1) are also adjustably mounted to link plate 104. Mounted to the front of ram 26 are three switches 107f, 107g, and 107h, each of which have cam arms 109 with rollers that interact with the surfaces of cam plates 107c, 107d and 107e, respectively. Cam plate 107c and switch 107f control the downward movement of ram 26 relative to bed 28. Both such components on scale plate 107a and 107b on cam 107c have vertical markers that can be aligned with each other as desired, so that adjustable cam 107c can be moved to be set at the desired spot to stop ram 26 at the desired point of downward movement.More Detailed Description of FIGS. 1-12 EmbodimentNow a more detailed description of the embodiment shown in FIGS. 1-12 will be given. The frame 22 comprises a pair of vertical uprights 111 and 112 each of which has an upper and lower C-shaped opening shown as 114 and 116 for upright 112 in FIG. 2. Bed 24 comprises a vertical metal plate having its inside adjustably mounted to the front edge of each of uprights 111 and 112 beneath the C-shaped opening 116. Bed 24 acts as a lower jaw in the pressing process, and has a female die with a V-shaped slot 120 in its upper end. The ram 26 comprises a metal upper vertical jaw plate 124 to which a lower tooth punch 126 is attached. Tooth punch 126 has a horizontal lower edge 127. The upper edge of ram plate 124 is welded to the undersides of wedge slide plates 36 and 38 to thereby mount ram 26 to moving assembly 28. When the hydraulic cylinders 50 and 52 are activated to move the drive members 68 and 70 and drive rods 72 and 74 to slide the wedges 32 and 34 to and fro as heretofore described, the ram plate 126 and tooth punch 126 are moved up and down by virtue of ram plate 126 connection to the slide plates 36 and 38. The front side of ram plate 126 has a metal switch mounting plate 130 secured to it as by welding. The switches 107f, 107g and 107h are mounted to the top of switch plate 130.Frame 22 comprises fixed position wedge plates 150 and 152 to which the upper part of assembly 28 is mounted. The upper ends of fixed wedge plates 150 and 152 fit in rectangular notches in frame uprights 111 and 112 (FIG. 2) located above the top of C-shaped openings 114, and secured by welding. Fixed wedges 150 and 152 have their lower slanted edges secured by welding to the top surfaces of slanted ramps 40 and 42, respectively.The front guide plates 90 and 96, as seen more clearly in FIGS. 7 and 8, have upper inwardly extending flanges 156 welded to the inside thereof. Rear guide plates 92 and 98 likewise have flanges 158 welded to the inside thereof. A pair of bolts 159 are threaded downwardly through each of the flanges 156 and 158, with the lower bolt ends secured to adjustable plates 160 and 162. The plates 160 and 162 have a flat sandwich sheet 166 of plastic and metal with a low coefficient of friction contained within the downwardly facing opening thereof to abut the top surface of ramps 40 and 42. Welded to the lower inside of each front guide plate 90 and 96, are flanges 170. In FIGS. 3, 4, and 5 the front guide plates 90 and 96 are not shown, although FIGS. 3-5 do show the upper inner flanges 156 that extend therefrom as well as the plates 160, and lower inner flanges 170 and the plates 178 connected thereto. Rear guide plates 92 and 98 likewise have flanges 172 welded to the inside thereof. Bolts 174 are threaded upwardly through the flanges 170 and 172, with the bolt ends secured to plates 178 and 180. A flat sandwich sheet 182 of plastic and metal with a low coefficient of friction is within the upwardly facing opening in plates 178 and 180 to abut the underside of slide plates 36 and 38. As can be best seen in FIG. 7, the front guide plate 96 with its associated upper and lower flanges 156 and 170 and the adjustable plates 160 and 178 forms or define a front C-clamp. Similarly, a back C-clamp is formed by the back guide plate 98 with its associated upper and lower flanges 158 and 172 and the adjustable plates 162 and 180. Similar C-clamps are formed from the front and back guide plates 90 and 92 which surround the wedge 32. The front and back C-clamps are adjusted using bolts 159 so that the upper plates 160 and 162 abut or are in contact with the upper surface of the ramps 40 and 42 and the lower plates 178 and 180 are adjusted using bolts 174 so that they are in contact with the lower surface of plates 36 and 38. The C-clamp plates 178 and 180 slide along the underside of slide plates 36 and 38, while the upper C-clamp plates 160 and 162 slide along the upper surface of ramps 40 and 42. The bolts 159 and 174 allow adjustability in the pressure applied by the C-clamp plates 160, 162, 178 and 180.As stated above, when the wedges 32 and 34 are moved to the left by the cylinders 50 and 52, the ram 26 is moved toward the bed 24 by the interengagement or cooperation of the wedges 32 and 34 with the underside of ramps 40 and 42. When the wedges 32 and 34 are moved to the right by the cylinders 50 and 52, the ram 26 is moved upwardly away from the bed 24 by the interengagement or cooperation of the C-clamp plates 160 and 162 with the top surface of the ramps 40 and 42. That is, as the wedge is moved to the right, the C-clamp top plates 160 and 162 will be forced to move vertically as they ride along the top surface of the ramps 40 and 42. As can be appreciated, because the bottom plates 178 and 180 are operatively connected to the top plates 160 and 162 by the flanges and the guide plates, as the top plates 160 and 162 move vertically upwardly, the bottom plates 178 and 180 will also be moved vertically upwardly. Thus, the bottom plates will push the plates 36 and 38 upwardly as the wedge is moved to the right. As the plates 36 and 38 are connected to the ram 26, the ram 26 will be moved upwardly. Thus, essentially, the wedges are used to push the ram down and the C-clamps are used to pull the ram up.Mounted to the upper edge of ram plate 126 to the left of each of the fixed wedges 150 and 152, from the perspective of FIGS. 1, 3-6 and 12, are pairs of dampening assemblies 190 and 192. The assemblies 190 and 192 are identical, so identical reference numbers are used for like parts. The assemblies 190 and 192 have a pair of triangular gib mounting plates 194. As seen more clearly for assembly 190 in the enlarged FIG. 12 drawing, each pair of plates 194 are secured as by welding to plates 196, respectively, that are in turn welded to the top of ram plate 124. Cross gib support plates 200 have their outsides secured as by welding to the top vertical edges of triangular plates 194. A pair of adjusting screws 204 are threaded through support plates 200 and bear into partial holes in gib plates 210 to adjustably mount plates 210. A pad of bearing material 214 is mounted to the outer surfaces fixed wedges 150 and 152 to abut the inside of the plates 210. When the machine 20 is operated, as will be explained below, the bearing material 214 slides relative to the plate 210. The aforesaid gib pads and plates 210 and 214, form a sliding interface which prevents forces from the horizontal movement of the ram from being transferred to the frame 22 of the machine 20 to reduce wear and tear, and disfigurement, of the machine components.The cylinders 50 and 52 are shown to be of different diameter. For example, with a fifty ton press, cylinder 52 could be a 2.5 inch (6.35 cm.) diameter cylinder, and cylinder 52 could be a 4 inch (10.16 cm.) diameter cylinder. With this combination, the 2.5 inch (6.35 cm.) cylinder 52 could be employed for fast advance of the ram 26 from the FIG. 3 position to the FIG. 4 position which is just prior to the bending of the plate or sheet. From that point, both of the cylinders 50 and 52 could be employed for bending the sheet or plate. Many variations of cylinder size can be employed, and the cylinders 50 and 52 could be selected to be of the same size.The cylinders 50 and 52 are fed by hydraulic pipes 226 (FIG. 1) which are connected to a hydraulic power source 228, as known in the art. Although a hydraulic power source has been illustrated, a pneumatic power source and pneumatic cylinders can also be used, a rotating screw with nut and free wheeling clutch may be employed to move each wedge, as can other suitable power and drive apparatus.The nuts and bolts 108 and 110, as seen in FIGS. 7 and 8, extend through each of the front and rear link plates 104 and 106, through the front and rear guide plates 90 and 92, and 96 and 98 respectively, and through the respective wedges 32 and 34. As seen in FIG. 7, for wedge 34 and guide plates 96 and 98, the side plates 90 and 92, and 96 and 98, fit snugly against the sides of respective wedges 32 and 34. This prevents the wedges 32 and 34 from sliding away from engagement with all of the surfaces of their respective slide 36 and 38 and ramp 40 and 42. FIGS. 7 and 8 also show each wedge 32 and 34 having an upper recess which receives a flat sandwich sheet 240 of plastic and metal with a low coefficient of friction, and a lower recess which receives a flat sandwich sheet 242 of like material. The sheets 240 and 242 help to reduce friction between the wedges and their adjacent slides and ramps, to reduce wear and tear, and to provide smoother operation. Alternatively, rollers can be substituted for sheets 240 and 242. The total force applied to the ram may be increased or decreased by changing the slope of the wedges 32 and 34 during the design and manufacturing stages. The drive rods 72 and 74, as shown with regard to rod 72 in FIG. 9, have ends that extend within rectangular slots in wedges 32 and 34, and which can be secured to the wedges by welding.Referring now in more detail to the scale adjustment assembly 107, each of the cam plates 107c, 107d and 107e, as exemplified by cam plate 107c shown in the enlarged view of FIGS. 10 and 11, have a horizontal lower central edge 250 with a left slanted lower edge 252 and a right slanted edge 254 to the sides thereof. As shown in FIGS. 10 and 11 for cam plate 107c, the cam plates 107c, 107d and 107e each have a channel cross-section with flanges 260 and 262 extending on either side of link plate 104. An adjustable screw 266 extends through the front flange 260 to press against the surface of link plate 104 and thereby hold cam plate 107c in position. Scale plate 107a has slotted ends to receive bolts 268 that screw into bores in link plate 104 to hold scale 107a thereto. Looking at FIG. 10, the vertical markings of scale 107b on cam plate 107c and the vertical markings on scale 107a are spaced to allow positioning of the two scale components in Vernier Scale fashion. In the embodiment shown in FIGS. 1-12, the ratio of travel of link plate 104 (or wedges 32 and 34) relative to ram 26 is about 3.2 to 1. The vertical markings on scale components 107a and 107b are spaced according to such ratio. As noted earlier, the left switch 107f controls the point of downward penetration of the lower horizontal edge 127 of tooth punch 126 relative to the horizontal V-slot 120 of the female die of bed 24. Thus, by setting the position of scale 107b relative to the scale 107a, the point of the lower extension of horizontal ram tooth punch edge 127 is controlled. The horizontal scale arrangement shown for scale 107a and scale 107b allows for greater accuracy than with a vertically extending scale, since the scale arrangement takes advantage of the greater ratio of movement of the link plate 104 relative to the ram 26. This allows accurate and precision-like control of the point or extent of downward penetration of cam 26.The other switches 107g and 107h also act to control ram movement. The engagement of cam plate 107d (the approach cam) with the arm of switch 107g stops the movement of ram 26 just before contact with the sheet or plate to be bent. The engagement of cam plate 107e with the arm of switch 107h activates that switch to stop the upward travel of ram 26. Suitable electrical circuitry connects the switches 107f, 107g and 107h to the power source 228, as known in the art, to activate and deactivate the power source 228 by engagement of the cam plates with the switch as aforesaid.Turning now to a description of the second embodiment shown in FIG. 13, a press brake machine 20 has a single hydraulic cylinder 300, as opposed to the dual hydraulic cylinder arrangement of FIGS. 1-12. The FIG. 13 embodiment shows a connecting plate 302 secured as by welding to the upper edge of ram 26. Cylinder 300 has a member 304 extending from its right end which is secured as by a nut and bolt 306 to connecting plate 302. At the other end of cylinder 300 a drive member 310 slidingly extends to be connected by a nut and bolt 312 to a drive rod 314. Drive rod 314 is in turn connected to left side wedge 32 in the same fashion as demonstrated for the FIGS. 1-12 embodiment. The wedges 32 and 34 are drivingly connected to one another in the same fashion that wedges 32 and 34 are connected by the link plates illustrated as 104 and 106 in the FIGS. 1-12 embodiment. In FIG. 13 the outline of the front link plate 104 is shown in dashed lines, while the rear link plate 106 has the same position as link plate 104. The single hydraulic cylinder 300 drives member 310 and drive rod 312 to move wedge 32 to and fro, with the linkage through the link plates 104 and 106 also driving wedge 34 to and fro equidistant to the wedge 32 movement. The wedges 32 and 34 slide along the slides 36 and 38 and ramps 40 and 42 in the same fashion as described for the FIG. 1-12 embodiment, to move ram 26 toward and away from bed 24. The link plates 104 and 106, as with the FIGS. 1-12 embodiment, allow for equal application of force to the ends of the ram 26 and equal force across the ram tooth edge 127 during bending. Other components in FIG. 13 are given prime numbers corresponding to numbers for components in FIGS. 1-12. The FIG. 13 single cylinder embodiment can be preferable in situations where less variation in the power exerted relative to the ram is needed.The FIG. 14 modification shows a press brake machine 20 wherein a single hydraulic cylinder 400 is used. The position of the ram 26 and bed 24 are reversed from that of the embodiments of FIGS. 1-12. The ram 26 is shown positioned beneath bed 24. The movement assembly 28 acts to drive the ram 26 upwardly to bend metal sheets and plates positioned between ram 26 and bed 24, and to move the ram 26 downwardly away from bed 24 to allow removal or repositioning of the bent sheets and plates.The cylinder 400 has its ends secured to the underside of ram 26 by a pair of angle brackets 402 to hold cylinder 400 in fixed relationship to ram 26. Extending from both ends of cylinder 400 are drive rods 406 and 408. The end of rod 406 is threaded into the inner end of wedge 32 to drivingly move wedge 32. The outer end of rod 408 extends through wedge 34 and is secured by a bolt 410 threaded on the end of a rod 408. Collars 414 can be threaded around the drive rods 406 and 408 at the point in which they extend into wedges 32 and 34.FIGS. 15 and 16 show a press brake machine 20 wherein the ram 26 can be moved or pivoted relative to the frame 22 to impart a slope to the ram 26 so that the ram 26 will be pivoted relative to the bed 24. An L-shaped member 500 is secured to the upright 111 of the frame 22 above the wedge plate 150. The L member 500 has an elongate first leg 502 which extends along the top of the wedge plate 150 and a shorter leg 504 which extends downwardly, parallel to the outer surface of the wedge plate 150. A bolt 506 passes through the first leg 502 into the upright 111 to secure the L-member to the frame 22. As seen in FIG. 17, the leg 502 has a dove-tail shaped groove 508 in its lower surface. The wedge plate 150 has a corresponding dove-tail shaped tennon 510 on its upper surface which is slidingly received in the groove 508. Thus, whereas the wedge plates 150, 150 and 150 of the embodiments of FIGS. 1-14 are fixedly secured to the frame of the press brake machine, the wedge plate 150 can be moved relative to the frame 22 along a path which is parallel to the ram 26 and which is defined by the tennon 510 and groove 508.A threaded bolt hole 512 extends through the second leg 504 of the L-member, and a threaded bolt hole 514 is formed in the outer surface of the wedge plate 150, the bolt holes 512 and 514 being coaxial with each other. A threaded bolt 516 passes through the bolt hole 512 of the L-member 500 to be received in the bolt hole 514 of the wedge plate 150. In FIG. 15, the ram 26 is shown to be generally parallel to the bed 24. As can be seen by comparing FIGS. 15 and 16, when the bolt 516 is rotated, the bolt 516 will be threaded through the leg 504 of the L-member 500 to push the wedge plate 150 to the right, as seen in FIG. 15. When the wedge plate 150 is moved to the right, as seen in FIG. 16, so that the outer surface of the wedge plate 150 is no longer co-planar with the outer surface of the slide plate 36. When moved to the right, the wedge plate 150 will interact with the wedge 32, and cause the ram to pivot about the bolt 110 on the opposite side of the ram 26. This will narrow the gap between the ram 26 and the bed 24 at the left side of the press, but leave the gap between the ram and bed substantially unchanged at the right side of the press.When the ram 26 is set to a desired angle, the operation of the press brake 20 is identical to the operation of the press brake 20 of FIGS. 1-12. Operation of the movement assembly 28 is identical to that described above and the transmission of the downward force transmitted by the wedges will be transmitted between the two wedges, as described above, to maintain a constant pressure across the ram. However, because the left side of the ram 26 is lower than the right side of the ram, with reference to FIGS. 15 and 16, the tooth punch of the ram will enter the die of the bed further on one side than on the other. This will enable the press brake machine to be used to make more types of bends in the sheet metal than it would be otherwise able to make if the press brake machine were limited to a parallel relationship between the ram 26 and the bed 24. For example, the press brake machine will be able to make fade-out type bends, which can not be made when the bed and ram are parallel.The press brake machine 20 shown in FIGS. 18 and 19 is analogous to the press brake machine 20 shown in FIG. 14. In the press brake machine 20 the position of the ram 26 and bed 24 are reversed from that of the embodiments of FIGS. 15-16. The ram 26 is shown positioned beneath bed 24. The movement assembly 28 acts to drive the ram 26 upwardly to bend metal sheets and plates positioned between ram 26 and bed 24, and to move the ram 26 downwardly away from bed 24 to allow removal or repositioning of the bent sheets and plates.The press brake machine 20 is provided with the L-shaped member 500 to enable pivoting of the ram 26 around the bolt 110 relative to the bed 24. As seen in FIG. 18, the ram 26 and bed 24 are shown in a parallel relationship, and in FIG. 19, the bolt 516
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:多功能封口机的设计
链接地址:https://www.renrendoc.com/paper/171730354.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!