版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选ppt第五章第五章 误差的基本知识误差的基本知识测量误差测量误差=观测值观测值真值真值(理论值理论值)精选ppt第一节第一节 测量误差产生的原因及其分类测量误差产生的原因及其分类 测量误差主要由测量仪器、测量人员、测量环境造测量误差主要由测量仪器、测量人员、测量环境造成。其可以分为成。其可以分为系统误差系统误差和和偶然误差偶然误差两大类。粗差是错两大类。粗差是错误,不是误差。误,不是误差。精选ppt一、系统误差一、系统误差在相同的观测条件下,误差保持在相同的观测条件下,误差保持同一数值同一数值、同一符号同一符号,或,或者者遵循一定的变化规律遵循一定的变化规律的误差,称为系统误差。的误差,称
2、为系统误差。比如:比如:水准尺端部磨损;水准尺端部磨损;水准尺倾斜;水准尺倾斜;水准尺弯曲;水准尺弯曲;水准尺的沉降水准尺的沉降;目标倾斜目标倾斜特性:累计!特性:累计!精选ppt二、偶然误差二、偶然误差在相同的观测条件下,对某对象作一系列观测,观测误差在相同的观测条件下,对某对象作一系列观测,观测误差的的大小大小和和符号符号表面上没有规律,这种误差称为偶然误差。表面上没有规律,这种误差称为偶然误差。若观测数据只含有偶然误差,在若观测数据只含有偶然误差,在观测次数多观测次数多的情况下,误的情况下,误差呈现出差呈现出统计学统计学上的规律。上的规律。v例如:某一测区在相同条件下观测了例如:某一测区
3、在相同条件下观测了358358个三角形的全部内角,计个三角形的全部内角,计算算358358个三角形内角观测值之和的真误差,将真误差取误差区间为个三角形内角观测值之和的真误差,将真误差取误差区间为3”3”,并按绝对值大小进行排列,分别统计在各区间的正负误差出,并按绝对值大小进行排列,分别统计在各区间的正负误差出现的频率现的频率k kn n,结果列于下表,结果列于下表 :精选ppt以表中的数据,绘制误差直方图。使横轴代表误差值,以表中的数据,绘制误差直方图。使横轴代表误差值,纵轴代表频率,图中直方图的纵轴代表频率,图中直方图的面积总和为面积总和为1,此直方图可,此直方图可以形象描述偶然误差的规律性
4、。当观测条件足够多时,直以形象描述偶然误差的规律性。当观测条件足够多时,直方图中各矩形顶部就可以形成一条对称、光滑的曲线。方图中各矩形顶部就可以形成一条对称、光滑的曲线。偶然误差的规律性:偶然误差的规律性:1、有界性有界性:偶然误差的绝对:偶然误差的绝对值不会超过一定的限值;值不会超过一定的限值;2、大小性大小性:绝对值小的比绝:绝对值小的比绝对值大的出现的可能性大;对值大的出现的可能性大;3、对称性对称性:误差出现正负的:误差出现正负的可能性相同;可能性相同;4)抵偿性抵偿性:偶然误差的算术:偶然误差的算术平均值随观测次数增加而趋平均值随观测次数增加而趋于零;于零;精选ppt第二节第二节 等
5、精度条件下观测值的算术平均值等精度条件下观测值的算术平均值设在相同条件下对设在相同条件下对X观测了观测了n次:次:XLnXLnlLnXnlnnXlnXlXlXlnnnnlim0lim2211得由误差的抵偿性:得令得个式子相加:算术平均值接近于真值,是测量对象的可靠结果,又称为算术平均值接近于真值,是测量对象的可靠结果,又称为最或是值最或是值。精选ppt第三节第三节 衡量精度的标准衡量精度的标准一、一、平均误差平均误差nnn21二、二、中误差中误差nnmn22221测量一般采用测量一般采用三、三、允许误差允许误差测量规定允许中误差为测量规定允许中误差为mf)(允32四、四、相对误差相对误差)/(
6、1mDDmk相对误差相对误差不能用于不能用于衡量角度测量的精度。衡量角度测量的精度。精选ppt例:例:v某水平角用经纬仪进行某水平角用经纬仪进行6 6次等精度丈量,其结果如下次等精度丈量,其结果如下表,试计算该角度观测值中误差。表,试计算该角度观测值中误差。v解:部分计算如表中所示,观测值中误差为(白赛解:部分计算如表中所示,观测值中误差为(白赛尔公式):尔公式):序号序号观测值观测值l lv vvvvv1 1252523202320-2-24 42 2252523172317+1+11 13 32525231823180 00 04 4252523202320-2-24 45 5252523
7、162316+2+24 46 6252523172317+1+11 1= 25= 2523182318v=0v=0vv=50vv=50503.216 1vvmn 精选ppt第四节第四节 误差传播定律误差传播定律 有些未知量是由一些直接观测值通过函数运算而得。有些未知量是由一些直接观测值通过函数运算而得。由于观测值存在误差,由其计算的结果自然也就存在误由于观测值存在误差,由其计算的结果自然也就存在误差。描述这种函数的中误差与观测值的中误差的关系的差。描述这种函数的中误差与观测值的中误差的关系的定律称为定律称为误差传播定律误差传播定律。精选ppt一、线性函数的中误差一、线性函数的中误差1、观测值的
8、和、差函数、观测值的和、差函数xFxFxxFFxFxFxnFnxFxFxnFnxFxFxFxFkmmmkmmnmnnknknkkkkkkkxkFkxF222222222222222222222212212211;令个式子相加得:得则可得)(则设倍函数精选ppt2、观测值的和、差函数、观测值的和、差函数22221212222222222222222222222222222112121212221110lim 2 2222xnxxFnyxFyxFyxnyyxxFFyxyxFyxyxFynxnynxnFnyxyxFyxyxFynxnFnyxFyxFyxFyxFmmmmxxxFmmmmmmnmnmnm
9、nnnnnnyxFyxF其函数中误差公式为:同样可以推导出由于;令个式子相加得:得则可得)()(则设函数3、线性函数的中误差、线性函数的中误差22222221212211xnnxxFnnmkmkmkmxkxkxkF其函数中误差公式为:线性函数:精选ppt二、非线性函数的中误差二、非线性函数的中误差2222222122222221221221121)()()()()()(),(212121nnnxnxxFxnxxFxnxxFnnnmxFmxFmxFmFmxFmxFmxFmxFxFxFdxxFdxxFdxxFdFxxxfF的中误差为:得函数:此式子是一线性表达式则真误差关系式为:取全微分:设非线性
10、函数精选pptP87例例3:由:由A点放样点放样B点,距离为点,距离为D=206.1250.003m,方,方位角位角=11945004,计算放样,计算放样B点点位中误差。点点位中误差。22222222222222222cos(cos)()()(cos)(cos)()()(cos)()()34xDyDBxyDDDBDDBxDyDSinmmmmDSinmm SinDmmmmmmDSinm SinDmmDmmmDmmmm 解: 点坐标增量为:;则:则点位中误差为:代入:,22206265206.125 ;43(206.125 1000)5206265BDmmmm ,精选ppt三、测量精度分析三、测量
11、精度分析1、有关水准测量的精度分析、有关水准测量的精度分析1)在水准尺上读一个数的中误差)在水准尺上读一个数的中误差水准仪置平的误差水准仪置平的误差由于受人视觉限制,气泡偏离中点的误差为分划值的由于受人视觉限制,气泡偏离中点的误差为分划值的0.15倍,其影响在水准尺上的读数为:倍,其影响在水准尺上的读数为:Sm15.01瞄准误差瞄准误差人眼把两点的视角小于人眼把两点的视角小于1的情况看做为一点。用放大倍的情况看做为一点。用放大倍数为数为v的望远镜照准目标,照准精度为:的望远镜照准目标,照准精度为:vv30260照准精度在水准尺上的影响为:照准精度在水准尺上的影响为:vSm302读数误差读数误差
12、读数误差与水准尺的分划有关,对分划为读数误差与水准尺的分划有关,对分划为1cm的水准尺,的水准尺,读数误差约为读数误差约为1.5mm,水准尺上的读数影响为:,水准尺上的读数影响为:mmm5 . 13综上所述,水准尺上读取一个数的中误差为:综上所述,水准尺上读取一个数的中误差为:232221mmmm读四等水准测量中,四等水准测量中,=20,v=25倍,倍,S最大为最大为100m,相应,相应水准尺上读取一个数的中误差为水准尺上读取一个数的中误差为m读读=2.1mm。精选ppt2)一个测站高差的中误差)一个测站高差的中误差一个测站高差为后视读数减前视读数,则一个测站的高差一个测站高差为后视读数减前视
13、读数,则一个测站的高差中误差为:中误差为:3mm2读站mm3)水准路线的高差中误差及允许误差)水准路线的高差中误差及允许误差设在两点间设了设在两点间设了n个测站,其测得的高差中误差为个测站,其测得的高差中误差为mmnnmmh3站取取3倍中误差作为限差,并考虑其他因素,得四等水准测量倍中误差作为限差,并考虑其他因素,得四等水准测量高差闭和差的允许值为:高差闭和差的允许值为:mmnfh10允平坦地区每平坦地区每km取取16站,得站,得mmmmfkm12163则则环形闭合差或往返不符值的中误差环形闭合差或往返不符值的中误差为:为:mmSmmmSmkmh12取取3倍倍中误差作为限差,其允许值为:中误差
14、作为限差,其允许值为:mmSfh40允依据测站数计算允许误差:依据测站数计算允许误差:mmnfh10允mmSfh40允每每km少于少于16站:站:每每km多于多于16站:站:精选ppt2、有关水平角观测的精度分析、有关水平角观测的精度分析DJ6观测一个方向的一个测回的中误差为观测一个方向的一个测回的中误差为6,则照准一,则照准一个方向的半测回的中误差为:个方向的半测回的中误差为:5.862方m1)用测回法观测水平角的限差分析)用测回法观测水平角的限差分析半测回中误差半测回中误差125 . 822方半mm上下半测回较差中误差上下半测回较差中误差171222半mm取取2倍作为允许误差倍作为允许误差
15、)(规范取允3634172f一测回测角中误差一测回测角中误差5 .82122半mm测回差的中误差测回差的中误差1225 . 82mm测回差取取2倍作为允许误差倍作为允许误差24122测回差允f精选ppt3、菲罗列公式、菲罗列公式设以同精度观测一系列三角形的三内角,即:设以同精度观测一系列三角形的三内角,即:iiicbammmm三角形的闭合差的计算关系式为:三角形的闭合差的计算关系式为:180iiiicbaf由误差传播定律得:由误差传播定律得:3322ffmmmm由中误差的定义得三角形闭合差的中误差为:由中误差的定义得三角形闭合差的中误差为:nffmiif可推导出:可推导出:nffmii3精选p
16、pt第五节第五节 观测值及算术平均值的中误差观测值及算术平均值的中误差一、同精度观测值的中误差一、同精度观测值的中误差观测值的中误差。即用观测值的改正数求又由:所有式子相加,整理得等式平方得:整理得:令对应式子相加得:改正数为,真误差为相应的平均值为的一系列观测值设真值为11)(2122)(102222:,2223121222312122221222321222222222222221221212211221122112211nVVnmVVnnnnVVnnnnnnnnnXlXnlXLnVVnVnVnVVnVVVVVVVVVXLXLVXLVXLVlLVlLVlLVXlXlXlVLlXnnnnnn
17、nnnnnniii精选ppt二、算术平均值的中误差二、算术平均值的中误差均值的中误差即用改正数计算算术平为:的中误差算术平均值则有误差传播定律可得式为:算术平均值的函数表达) 1()1()1()1(22221nnVVMnmMmnmnmnMMLnlnlnlnlLn由公式可见,增加观测次数,可以由公式可见,增加观测次数,可以提高算术平均值的精度,但实际观提高算术平均值的精度,但实际观测中不可能完全依靠增加观测次数测中不可能完全依靠增加观测次数来提高算术平均值的精度。来提高算术平均值的精度。精选ppt第六节第六节 不同精度观测不同精度观测 由于在测量过程中,可能采用不同的测量仪器、不同由于在测量过程
18、中,可能采用不同的测量仪器、不同的观测方式,因此所得到的观测数据精度就不一致,如何的观测方式,因此所得到的观测数据精度就不一致,如何由不同观测精度的测量数据计算观测对象的由不同观测精度的测量数据计算观测对象的最或是值最或是值,就,就必须考虑各观测值的可靠程度,即考虑必须考虑各观测值的可靠程度,即考虑观测值的权观测值的权。精选ppt一、权一、权测量中的权,就是表示观测数据可靠程度的测量中的权,就是表示观测数据可靠程度的相对性相对性数值,数值,用用P表示。表示。1、确定权的方法、确定权的方法1)利用观测值中误差来确定权的大小)利用观测值中误差来确定权的大小设不同精度观测值为设不同精度观测值为l1、l2 ln ,对应精度为,对应精度为m1、m2、 mn,各观测值权的计算式为:,各观测值权的计算式为:2222211nnmPmPmP不同不同的取值,并不影响各观测值的权的比值:的取值,并不影响各观测值的权的比值:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 佛山市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解1套
- 保山市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(各地真题)
- 2026年芜湖市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及完整答案详解一套
- 和田地区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(突破训练)
- 2026年三明市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)带答案详解(完整版)
- 拉萨市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(考试直接用)
- 绥化市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(研优卷)
- 西宁市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(全优)
- 酉阳土家族苗族自治县农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(研优卷)
- 彭水苗族土家族自治县农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(黄金题型)
- GB/T 17747.2-2011天然气压缩因子的计算第2部分:用摩尔组成进行计算
- 2023年研究生自然辩证法概论期末考试题库
- 2022年南京六合经济技术开发集团有限公司招聘笔试试题及答案解析
- 伦理学与生活第二三四五章(规范伦理学)-1P课件
- DB61-T 1061-2017挥发性有机物排放控制标准
- 小学数学 冀教课标版 四年级上册 典型问题 典型问题(例题5)课件
- Unit3 Starting out课件-高中英语外研版必修第一册
- 桂林市高考调研考试质量分析报
- 中职《机械基础》全套课件(完整版)
- 电子商务客户服务5套综合测试题带答案
- 第5章-非平衡载流子-习题讲解..
评论
0/150
提交评论