下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、角平分线的课件从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。教学目标【知识与技能】1.会阐述角平分线的性质定理及其逆定理.2.会应用角平分线定理及其逆定理证明两条线段相等或两个角相等.【过程与方法】1.经历探索角平分线作法的过程,进一步体验轴对称的特点,发展空间观察能力.2.探索角平分线定理,培养学生认真探究、积极思考的能力.【情感 、态度与价值观】1.体验数学与生活的联系,发展学生的空间观念和审美观.2.活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,使学生具有一些初步研究问题的能力.重点难点【重点】角平分线的性质定理及其逆定理.【难点】
2、理解并证明角平分线的性质定理及其逆定理.教学过程一、创设情境,导入新知师:同学们知道怎样作出角的平分线吗?生1:可以通过折纸得到一个角的平分线.生2:也可以用量角器来画一个角的平分线.师:下面我们来学习用尺规作图的方法作出AOB的平分线.作法:1.以O为圆心、任意长为半径圆弧分别交OA、OB于点M、N,如图(1).2.分别以点M、N为圆心,以大于MN长为半径在角的内部画弧交于点P,如图(2).3.作射线OP,则OP为所要求作的AOB的平分线.师:通过上面的作图,启发我们可以用尺规完成:“经过一点作已知直线的垂线.”教师边操作边讲解:用纸剪一个角,把纸片对折,使角的两边叠合在一起,再把纸片展开,
3、你看到了什么?把对折的纸片继续任意折一次,然后把纸片展开,又看到了什么?学生操作.师:从上面折纸中我们发现,纸片第一次对折后的折痕是什么?生:是这个角的平分线.师:你第二次折时出现的两条折痕的长度之间有什么关系?生:一样长.师:因为第二次我们是任意折的,所以这种等长的折痕能折出无数对.二、共同探究,获取新知教师多媒体出示:操作:(1)折出如上图中的折痕PD、PE;(2)你和同桌用三角板测量一下,检测你们所折的折痕是否符合图示的要求.问题1:你能用文字语言阐述所画图形的性质吗?学生思考后回答.问题2:根据命题“在角平分线上的点到这个角的两边的距离相等”用符号语言填写下表:图形已知事项由已知事项推
4、出的事项OP平分AOB,PDOB,PEOA,垂足分别为D、EPD=PE(推证定理1)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:图形已知事项由已知事项推出的事项DEAB,BCAC,垂足分别为E、C,DE=DC.DAE=DAC问题4:用文字语言表述上表中的已知事项和由已知事项推出的事项.(推证定理2)三、练习新知,加深理解师:下面我们接着来探讨上面的问题3.教师多媒体出示:(1)AD平分BAC,DCAC,DEAB,(已知)DC=DE.( )(2)DCAC,DEAB,DC=DE,(已知)点D在BAC的平分线上.( )学生思考后抢答,教师板书.第1个括号中填
5、“角平分线上任意一点到角的两边的距离相等”,第2个括号中填“到角的两边距离相等的点在这个角的平分线上”.教师多媒体出示:【例1】 已知:C=C'=90°,AC=AC'.求证:(1)ABC=ABC'(2)BC=BC'.(要求不用三角形全等判定)学生思考后交流讨论.教师找一名学生板演,其余同学在下面做,然后集体订正.证明:(1)C=C'=90°,(已知)ACBC,AC'BC'.(垂直的定义)又AC=AC',(已知)点A在CBC'的角平分线上.(到一个角的两边的距离相等的点,在这个角的平分线上)ABC=ABC
6、'.(2)C=C',ABC=ABC',180°-(C+ABC)=180°-(C'+ABC').(三角形内角和定理)即BAC=ABC'.BCAC,BC'AC',BC=BC'.(角平分线上的点到这个角的两边的距离相等)【例2】 已知:ABC中,B、C的平分线BE、CF相交于点P.求证:AP平分BAC.证明:过点P分别作PMBC、PNAC、PQAB,垂足分别为M、N、Q.BE是B的平分线,点P在BE上,(已知)PQ=PM.(角平分线上任意一点到角的两边的距离相等)同理PN=PM.PN=PQ.(等量代换)AP平分BAC.(到角的两边距离相等的点在这个角的平分线上)四、课堂小结师:你今天学习了什么知识?有什么新的收获?学生回答,教师点评.教学反思本节课开头设计的折纸和画一画的活动,旨在丰富学生对角平分线性质的感知,有利于学生借助直观图从而准确地用文字语言揭示角平分线的性质.由于部分学生常常把“过角平分线上一点向角两边画垂线段”与“过角平分线上一点画角平分线的垂线”混为一谈,因此设计操作(1)、(2),为学生能正确画出符合要求的图形,从直观上以及三角板的正确使用上都作了恰当的铺垫,同时也为定理1的推理论证作准备.通过学生自己
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年五险一金备考题库丽水机场企业招聘及答案详解参考
- 2025年河南建筑职业技术学院公开招聘工作人员备考题库含答案详解
- 吉安市农业农村发展集团有限公司及下属子公司2025年第二批面向社会公开招聘备考题库参考答案详解
- 2025年四川天府新区广都学校教师招聘备考题库含答案详解
- 2025年新余学院人才招聘69人备考题库及参考答案详解一套
- 工程材料试卷及答案
- 宁波市轨道交通物产置业有限公司下属项目公司2025年度社会招聘备考题库及完整答案详解一套
- 成都市新都区2025年12月公开招聘街道社区消防站消防员的备考题库附答案详解
- 2025年年末结账相关的风险识别与应对
- 成都市泡桐树小学天府智造园分校2025年储备教师招聘备考题库及一套完整答案详解
- 粘豆包歇后语顺口溜
- 《城镇新建供水管道冲洗消毒技术规程 》
- 社区中心及卫生院65岁及以上老年人健康体检分析报告模板
- 病历书写基本规范课件
- 砼面板堆石坝混凝土面板无轨滑模施工技术专项方案设计模板
- 新海兰褐饲养管理手册
- 地下室抗浮锚杆工程施工方案
- 杆件的应力与强度计算拉伸杆
- HGT-20519-2009-化工工艺设计施工图内容和深度统一规定
- 大合唱领导讲话
- GB/T 4666-2009纺织品织物长度和幅宽的测定
评论
0/150
提交评论