



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元二次方程1. 了解一元二次方程的概念应用一元二次方程概念解决一些简单问题2掌握一元二次方程的一般形式ax2bxc0(a0)及有关概念3会进行简单的一元二次方程的试解;理解方程解的概念重点:一元二次方程的概念及其一般形式;一元二次方程解的探索难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项一、自学指导(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的
2、边长为x cm,则盒底的长为_(1002x)cm_,宽为_(502x)cm_得方程_(1002x)(502x)3600_,化简整理,得_x275x3500_ 问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为_4728_设应邀请x个队参赛,每个队要与其他_(x1)_个队各赛1场,所以全部比赛共_场列方程_28_化简整理,得_x2x560_探究:(1)方程中未知数的个数各是多少?_1个_(2)它们最高次数分别是几次?_2次_归纳:方程的共同特点是:这些方程的两边都是_整式_,只
3、含有_一个_未知数(一元),并且未知数的最高次数是_二次_的方程1一元二次方程的定义等号两边都是_整式_ ,只含有_一_个未知数(一元),并且未知数的最高次数是_2_(二次)的方程,叫做一元二次方程2一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2bxc0(a0)这种形式叫做一元二次方程的一般形式其中_ax2_是二次项,_a_是二次项系数,_bx_是一次项,_b_是一次项系数,_c_是常数项点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号二次项系数a0是一个重要条件,不能漏掉二、自学检测:学生自主完成,小组内展示,点评,教师巡视(6分钟
4、)1判断下列方程,哪些是一元二次方程?(1)x32x250;(2)x21;(3)5x22xx22x; (4)2(x1)23(x1);(5)x22xx21; (6)ax2bxc0.解:(2)(3)(4)点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程2将方程3x(x1)5(x2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项解:去括号,得:3x23x5x10,移项合并同类项,得:3x28x100,其中二次项系数是3,一次项系数是8,常数项是10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整一、
5、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果(8分钟)1求证:关于x的方程(m28m17)x22mx10,无论m取何值,该方程都是一元二次方程证明:m28m17(m4)21,(m4)20,(m4)210,即(m4)210.无论m取何值,该方程都是一元二次方程点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m28m170即可2下面哪些数是方程2x210x120的根?4,3,2,1,0,1,2,3,4.解:将上面的这些数代入后,只有2和3满足等式,所以x2或x3是一元二次方程2x210x120的两根点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式
6、两边是否相等即可二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(9分钟)1判断下列方程是否为一元二次方程(1)1x20; (2)2(x21)3y;(3)2x23x10; (4)0;(5)(x3)2(x3)2; (6)9x254x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是2若x2是方程ax24x50的一个根,求a的值解:x2是方程ax24x50的一个根,4a850,解得:a.3根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x225,4x2250;(2)x(x2)100,x22x1000.(学生总结本堂课的收获与困惑)(2分钟)1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏连云港市海州湾发展集团有限公司及子公司招聘20人笔试参考题库附带答案详解
- 2025广东省广晟控股集团校园招聘2025人笔试参考题库附带答案详解
- 2025年福建省晋江市市政工程建设有限公司权属公司招聘6人笔试参考题库附带答案详解
- 2025年河北石家庄印钞有限公司招聘13人笔试参考题库附带答案详解
- 2025年国网河北省电力有限公司高校毕业生招聘约215人(第二批)笔试参考题库附带答案详解
- 2025安徽芜湖凤鸣控股集团及其子公司选调10人笔试参考题库附带答案详解
- 划款转委托协议
- 品质合同协议书
- 工程担保合同协议书模板
- 企业合同变更协议书
- 护士站管理制度
- 奶茶饮品采购合同协议
- 2025初中教师资格证《教育知识与能力》考前必练题库500题(含真题、重点题)
- 肾切除手术的护理查房
- 2024年美睫技术考核试题及答案
- 儿童言语康复试题及答案
- 铁道概论道岔的结构课件
- 解析:湖北省十一校2024-2025学年高三第二次联考数学试卷(原卷版)
- 2024年江苏省常州外国语学校中考一模语文试题(含答案)
- 毕业设计(论文)-可调节办公椅分析与设计
- 2025年全球及中国潜孔钻机行业发展现状调研及投资前景分析报告
评论
0/150
提交评论