(推荐)历届高考中的“离散型随机变量的_第1页
(推荐)历届高考中的“离散型随机变量的_第2页
(推荐)历届高考中的“离散型随机变量的_第3页
(推荐)历届高考中的“离散型随机变量的_第4页
(推荐)历届高考中的“离散型随机变量的_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、历届高考中的“离散型随机变量的 分布列、均值与方差”试题汇编大全一、选择题: 1(2004辽宁)已知随机变量的概率分布如下:12345678910m 则ABCD二.填空题: (2006-2000年)1 (2006四川理)设离散型随机变量可能取的值为1,2,3,4.P(k)ak+b(k=1,2,3,4),又的数学期望E3,则_。2(2006福建理)一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是 3(2005全国卷理)设l为平面上过点(0,1)的直线,l的斜率等可能地取用表示坐标原点到l的距离,则随机变量的数学期

2、望E= .4(2005天津理)某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是_(元)5. (2004湖南理) 同时抛掷两枚相同的均匀硬币,随机变量=1表示结果中有正面向上, =0表示结果中没有正面向上,则E= .6.(2004湖北理)设随机变量E的概率分布为P(E=)=,为常数,1,2,则=_7.(2004全国卷理)从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为_012P8.(2001上海文)利

3、用下列盈利表中的数据进行决策,应选择的方案是_9. (2001江西、山西、天津理)一个袋子里装有大小相同的3个红球和2个黄球从中同时取出2个,则其中含红球个数的数学期望为 .(用数字作答)10(2000江西、天津理)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品的概率分布是012三、解答题: (2006年)1(2006安徽理)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添

4、加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。()写出的分布列;(以列表的形式给出结论,不必写计算过程)()求的数学期望。(要求写出计算过程或说明道理)2、(2006广东)某运动员射击一次所得环数的分布如下:789100现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为. (I)求该运动员两次都命中7环的概率(II)求的分布列(III) 求的数学期望.3. (2006湖南理)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0

5、.5, 整改后安检合格的概率是0.8,计算(结果精确到0.01):()恰好有两家煤矿必须整改的概率;()平均有多少家煤矿必须整改;()至少关闭一家煤矿的概率.4、(2006江西理)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元,现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令x表示甲,乙摸球后获得的奖金总额。求:(1)x的分布列 (2)x的的数学期望5 (2006山东理)袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球

6、被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量的概率分布和数学期望;(3)计分介于20分到40分之间的概率.6(2006辽宁理)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为、;已知乙项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为,对乙项目每投资十万元, 取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量、分别表示对甲、乙两项目各投资十万元

7、一年后的利润.(I) 求、的概率分布和数学期望、;(II) 当时,求的取值范围.7、(2006全国卷理)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为。()求一个试验组为甲类组的概率;()观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。8(2006全国卷理)某批产品成箱包装,每箱5件一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验设取出的

8、第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品()用表示抽检的6件产品中二等品的件数,求的分布列及的数学期望;()若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率9(2006陕西理)甲、乙、丙3人投篮,投进的概率分别是, , .()现3人各投篮1次,求3人都没有投进的概率;()用表示乙投篮3次的进球数,求随机变量的概率分布及数学期望E.10、(2006天津理)某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射

9、击了4次的概率(用数字作答);(3)设随机变量表示射手第3次击中目标时已射击的次数,求的分布列11(2006重庆理)某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用表示这5位乘客在第20层下电梯的人数.求:()随机变量的分布列;()随机变量的期望. 1.(2005北京理科)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)记甲击中目标的次数为,求的概率分布及数学期望E; (II)求乙至多击中目标2次的概率; (III)求甲恰好比乙多击中目标2次的概率2(2005福建理科)甲、

10、乙两人在罚球线投球命中的概率分别为,投中得1分,投不中得0分.()甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;()甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;3(2005广东)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s:t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n次,以表示取球结束时已取到白球的次数. ()求的分布列; ()求的数学期望.4(2005湖北理)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考

11、试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列和的期望,并求李明在一年内领到驾照的概率.5、(2005湖南理)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没游览的景点数之差的绝对值。()求的分布及数学期望;()记“函数f(x)x23x1在区间2,)上单调递增”为事件A,求事件A的概率。6(2005辽宁)工序产品第一工序第二工序甲0.8

12、0.85乙0.750.8概率某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品. ()已知甲、乙两种产品每一道工序的加工结 果为A级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P甲、P乙; ()已知一件产品的利润如表二所示,用、等级产品一等二等甲5(万元)2.5(万元)乙2.5(万元)1.5(万元)利润 分别表示一件甲、乙产品的利润,在 (I)的条件下,求、的分布列及E、E; ()已知生产一件产品需用的工人数和资金额 如表三所示.

13、该工厂有工人40名,可用资.项目产品工人(名)资金(万元)甲88乙210 金60万元.设x、y分别表示生产甲、乙产用量 品的数量,在(II)的条件下,x、y为何 值时,最大?最大值是多少? (解答时须给出图示)7(2005全国卷理)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种。假定每个坑至多补种一次,每补种1个坑需10元,用表示补种费用,写出的分布列并求的数学期望。(精确到)8.(2005全国卷理)甲、乙两队进行一场排球比赛根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜

14、制,即先胜三局的队获胜,比赛结束设各局比赛相互间没有影响令为本场比赛的局数求的概率分布和数学期望(精确到0.0001)9(2005江西理)A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.(1)求的取值范围;(2)求的数学期望E.10.(2005山东理)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终止每个球在每一次被取出的

15、机会是等可能的,用表示取球终止时所需的取球次数()求袋中原有白球的个数;()求随机变量的概率分布;()求甲取到白球的概率11(2005浙江理)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p () 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E () 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值12(2005重庆理)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元

16、的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求: ()该顾客中奖的概率;()该顾客获得的奖品总价值(元)的概率分布列和期望1.(2004春招安徽理)已知盒中有10个灯泡,其中8个正品,2个次品,需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止,设为取出的次数,求的分布列及E.2.(2004福建理)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题。规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格。()求甲答对试题数的概率分布及数学期望;()求甲、乙两人至少有

17、一人考试合格的概率。3 .(2004浙江理)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同)。记第一次与第二次取到球的标号之和为。()求随机变量的分布列;()求随机变量的期望E。4(2004重庆理)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为。假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:(1)的概率的分布列及期望E; (2 ) 停车时最多已通过3个路口的概率。5. (2004天津理) 从4名男生

18、和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数。 (1)求的分布列;(2)求的数学期望;(3)求“所选3人中女生人数”的概率。6.(2004湖北理)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3;一旦发生,将造成400万元的损失。现有甲、乙两种相互独立的预防措施可供采用。单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别是0.9和0.85。若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少。(总费用=采取预防措施的费用+发生突发事件损失的期望值。)7(2004全国卷理)一接

19、待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有部电话占线.试求随机变量的概率分布和它的期望.8(2004全国卷理)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.()求这名同学回答这三个问题的总得分的概率分布和数学期望;()求这名同学总得分不为负分(即0)的概率.9(2003辽宁,天津理)A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1,A2

20、,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1对B1A2对B2A3对B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为、 (1)求、的概率分布; (2)求E,E.离散型随机变量的分布列第1题(2007海南、宁夏理)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()答案:第2题 (2007全国II理)从某

21、批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列答案:解:(1)记表示事件“取出的2件产品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则互斥,且,故 于是解得(舍去)(2)的可能取值为若该批产品共100件,由(1)知其二等品有件,故所以的分布列为012第3题 (2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰已知某选手能正确回答第一、二、三轮的问题的概率分别为且各轮问题能否正确回答互不影响()求该选手被淘汰的概率;()该选手在选择中回答问题的个数记为,求随机变量的分布列与数学期望(注:本小题结果可用分数表示)答案:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论