数列问题中易错题型剖析_第1页
数列问题中易错题型剖析_第2页
数列问题中易错题型剖析_第3页
数列问题中易错题型剖析_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数列问题中易错题型剖析湖南祁东育贤中学 周友良 421600一、在运用求通项时出错1设数列的前项和为,求这个数列的通项公公式错解 错解分析此题错在没有分析的情况,以偏概全误认为任何情况下都有正解 因此数列的通项公式是2 已知数列的前项和满足,求数列的通项公式。 解: 当时, 当时, 的通项公式为 说明:此题易忽略的情况。应满足条件。二、设元时与题中条件不等价出错3已知一个等比数列前四项之积为,第二、三项的和为,求这个等比数列的公比错解四个数成等比数列,可设其分别为则有,解得或,故原数列的公比为或错解分析按上述设法,等比数列公比,各项一定同号,而原题中无此条件正解设四个数分别为则,由时,可得当时

2、,可得三、忽视对公比是否等于1的讨论而出错4等比数列的前项和为,求公比。 解:若 则 矛盾 说明:此题易忽略的情况,在等比数列求和时要分公比两种情况进行讨论。5求和。 解:若 则 若 则 若 且 令 则 两式相减得 说明:此题易忽略前两种情况。数列求和时,若含有字母,一定要考虑相应的特殊情况。6求和(x+)2+(x2+)2+(xn+)2 正确答案:当x2=1时 Sn=4n 当x21时 Sn=+2n 错误原因:应用等比数列求和时未考虑公比q是否为1四、不能灵活运用等差等比数列性质出错7方程的四个实数根组成一个首项为的等比数列,则 正解: .错因:设方程的解为;方程的解为,则,不能依据等比数列的性质准确搞清的排列顺序.8已知s是等差数列a的前n项和,若a+a+a是一个确定的常数,则数列s中是常数的项是( )A s B s C s D s正确答案: D 错因:学生对等差数列通项公式的逆向使用和等差数列的性质不能灵活应用。电子邮箱zyl2518006,手机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论