方程应用题辅导教案讲义 3_第1页
方程应用题辅导教案讲义 3_第2页
方程应用题辅导教案讲义 3_第3页
方程应用题辅导教案讲义 3_第4页
方程应用题辅导教案讲义 3_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、龙文教育个性化辅导教案讲义 任教科目:数学授课题目:与结合函数有关的问题年 级:年级任课教师:邹敏 授课对象:合肥龙文个性化教育 万绿园校区 教学主任签名: 日 期: 合肥龙文教育学科辅导教案学生教师邹敏学科化学日期2014-4-星期星期时间段教学目标:1、教学重难点:教学流程及授课详案确定函数解析式,求函数值确定自变量取值范围实际问题数学问题方案设计:利用不等式或不等式组及题意方案决策: 最优方案:利用一次函数的性质及自变量取值范围确定最优方案解决问题近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出

2、现了僵局,在这里,我特举几例,也许对你有所帮助。例1 已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N种型号的时装套数为,用这批布料生产这两种型号的时装所获总利润为元。(1)求与的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少? 解:由题意得: 解得:4044与的函数关系式为:,自变量的取值范围是:404

3、4在函数中,随的增大而增大 当44时,所获利润最大,最大利润是:3820(元)例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。(1)写出每月电话费(元)与通话次数之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。解;(1)由题意得:与之间的函数关系式为:(2)当50时,由于60,所以20(元) 当100时,由于60,所以25.2(元)(3)27.820 60 解得:120(次)例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州

4、,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。(1)设运输这批货物的总运费为(万元),用A型货厢的节数为(节),试写出与之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?解:(1)由题意得:与之间的函数关系式为:(2)由题意得: 解得:2830 是正整数 28或29或30 有三种运输方案:用A型货厢2

5、8节,B型货厢22节;用A型货厢29节,B型货厢21节;用A型货厢30节,B型货厢20节。(3)在函数中 随的增大而减小 当30时,总运费最小,此时31(万元) 方案的总运费最少,最少运费是31万元。例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为(元),生产A种产品件,试写出与之间的

6、函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?解;(1)设需生产A种产品件,那么需生产B种产品件,由题意得: 解得:3032 是正整数 30或31或32有三种生产方案:生产A种产品30件,生产B种产品20件;生产A种产品31件,生产B种产品19件;生产A种产品32件,生产B种产品18件。(2)由题意得; 随的增大而减小 当30时,有最大值,最大值为: 45000(元) 答:与之间的函数关系式为:,(1)中方案获利最大,最大利润为45000元。例5 某地上年度电价为0.8元,年用电量为1亿度。本年计划将电价调至0.550.75元之间,经测算,若电价调至元,则本

7、年度新增用电量(亿度)与(元)成反比例,又当0.65时,0.8。(1)求与之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?收益用电量×(实际电价 成本价)解:(1)与反正比例 把0.65,0.8代入上式得:0.2 与之间的函数关系式为:(2)由题意得: 化简得: 即 0.5,0.6 0.550. 75 0.5不符题意,应舍去。 故0.6答:电价调至0.6元时,本年度电力部门的收益将比上年度增加20%。例6 为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2

8、元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为(立方米),应交水费为(元)(1)分别写出用水未超过7立方米和多于7立方米时,与之间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?解:(1)当07时,当7时, (2)当7时,需付水费:7×1.28.4(元)当10时,需付水费:7×1.21.9(107)14.1(元)设这个月用水未超过7立方米的用户最多可能有户,则:化简得:解得: 答:该单位这个月用水未超过7立

9、方米的用户最多可能有33户。例7 辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。(1)设用辆车装运A种苹果,用辆车装运B种苹果,根据下表提供的信息求与之间的函数关系式,并求的取值范围;(2)设此次外销活动的利润为W(百元),求W与的函数关系式以及最大利润,并安排相应的车辆分配方案。苹果品种ABC每辆汽车运载量 (吨)2.22.12每吨苹果获利 (百元)685解:(1)由题意得:化简得:当0时,10110答:与之间的函数关系式为:;自变量的取值范围是:110的整数。 (2)由题意得:W W与之间的函数关系式为: W随的增大而减小 当2时,W有最大值,最大值为: 315.2(百元) 当2时,16,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论