关于电磁场边值关系的讨论_第1页
关于电磁场边值关系的讨论_第2页
关于电磁场边值关系的讨论_第3页
关于电磁场边值关系的讨论_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于电磁场边值关系的讨论李梅 梅素珍 (湖北大学物理系,430062,武汉)【摘 要】 在介质分界面上建立直角坐标系,由麦克斯韦方程的积分形式导出电磁场的边值关系。依据电磁场的纵向属性和横向属性,分析电磁场突变的具体原因,认为电场的纵向性特征使电场只可能以法向不连续方式突变;磁场的横向性特征使磁场只可能以切向不连续方式突变。【关键词】 边值关系 麦克斯韦方程 纵向电磁场 横向电磁场 法向分量 切向分量电磁场所在的空间分布有多种介质时,由于其界面两侧的电容率和磁导率在分界面处产生跃变,即在界面上不连续,介质中的电磁场在界面处亦不连续,麦克斯韦方程的微分形式描述将不适用。此时可采用麦克斯韦方程的积

2、分形式从整体上来描述介质分界面两侧邻域的电磁场运动规律。本文在介质分界面上建立直角坐标系,运用麦克斯韦方程组的积分形式导出电磁场的边值关系。依据电磁场的纵向性和横向性特征讨论电磁场的突变原因。1电磁场的边值关系麦克斯韦方程的积分形式为(1)(2)(3)(4)其中If为穿过闭合环路l的传导电流,Qf为S面的自由电荷。图一1.1 切向边值关系(a)磁场的切向边值关系在介质分界面上某点取一小邻域,讨论其两侧的磁场。相对中心上下靠近的点而言,面可视为平面。如图一所示,建立直角坐标系,取xoy面与面重合,z轴与的法向相同,并设上有传导电流则有:(5)在xoz平面内横跨介质作狭长方框回路L1,长边平行于x

3、轴。则有 (6)L1回路短边长度最终趋近零,且上下边趋近于x轴,与其分别上下相贴。由(2)、(6)式,并考虑到短边趋近于零时,趋近于零,得(7)同理在图一中作狭长方框回路L2可得(8)由(5)、(7)和(8)式得此式按矢量运算法则可表示为(9)(b)电场的切向边值关系将(1)式与(2)式相比较,并采用磁场边值关系的推导方法,可得电场的边值关系(10)1.2 法向边值关系关于电磁场法向边值关系,很多教科书都给出了简洁准确的推导,其关系式为(11)(12)在此不再讨论其导出过程。2电磁场界在分界面上的突变原因在电磁场的作用下,介质的分界面会产生极化电荷和磁场化电流。利用介质电磁性质的实验关系、极化

4、强度和磁化强度的边值关系可将(11)和(9)分别表示为(13)(14)由(13)和(14)可知,当界面上某点存在面电荷分布,此点电场法向分量不连续,导致电场突变;若界面某点存在面电流分布,此点磁场切向分量不连续,导致磁场突变。将介面法向选为z轴,对应的电荷体密度可表示为对应的电流体密度为即界面分布的源存在奇异性,将会导致源所激发的场在源点突变。虽然电场与磁场的突变原因均与源点的奇异性相联系,但二者突变方式完全不同,前者为法向突变,切向连续;后者为法向连续,切向突变。通过分析电场的纵向性和磁场的横向性特征,可以剖析产生这种差异的根本原因。图二图二所示,在界面上取一足够小的带电面元,可将其视为体密

5、度为无限大的点电荷,无论电荷量是否需时间变化,其在的两侧近邻域产生的电场均为纵向场。纵向场的力线几何特征为,相对源点向外纵向伸开。相对于分界面而言,则是两侧的法向分量反向,切向相等,从而导致电场法向分量突变,切向分量连续。图三图三所示,界面上存在面电流,当面上的取得足够小时,可将其视为一段体密度为无穷大的电流元,方向在面上。电流元在界面两侧激发的磁场为横场,其力线的几何特征为磁力线相对电流元方向横向相切。相对于介质分界面而言,则是磁场切向分量反向,法向分量相等,从而使磁场切向分量突变,法向分量连续。综上所述,电磁场的突变原因分两个层次:其一,分界面存在体密度为无穷大的面分布源,导致电磁场产生突变。电场切向分量突变的大小由分界上的面电荷()的量值来决定,磁场的法向分量突变的大小由分界上的面电流()的大小来决定。其二,突变的具体方式由电磁场的纵向属性和横向属性决定。电荷在其邻域激发的电场具有纵向性特征使电场在介质分界面上只可能以法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论