




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数 学必修必修 人教人教A版版第三章直线与方程直线与方程3.2.3直线方程的一般式直线方程的一般式3.2直线的方程直线的方程1 1自主预习学案自主预习学案2 2互动探究学案互动探究学案3 3课时作业学案课时作业学案自主预习学案自主预习学案前面我们学习了直线方程的四种表达形式,它们都含有x、y这两个变量,并且x、y的次数都是一次的,即它们都是关于x、y的二元一次方程,那么直线的方程与二元一次方程有怎样的关系?AxByC0 1假设方程AxByC0表示直线,那么A、B应满足的条件为()AA0BB0CAB0DA2B20解析A、B不能同时为0,那么A2B20.D2(2021江西省九江市期末)如果AC0,
2、且BC0,那么直线AxByC0不过()A第一象限B第二象限C第三象限D第四象限C3直线kxy13k0,当k变化时,所有直线都恒过点()A(0,0)B(0,1)C(3,1)D(2,1)解析直线方程可化为y1k(x3),无论k为何值时,都过定点(3,1)4假设直线l1:xay20与直线l2:2ax(a1)y30垂直,那么a的值为_.解析由题意,得2aa(a1)0,解得a1或0.C1或0 互动探究学案互动探究学案命题方向1 直线的一般式方程典例 1 思路分析根据条件,选择恰当的直线方程的形式,最后化成一般式方程C 解析点(3,1)在直线3x2ya0上,3(3)2(1)a0,解得a7.又点(b,4)在
3、直线3x2y70上,3b870,解得b5,ab35. 设直线l的方程为(a1)xy2a0(aR)(1)假设l在两坐标轴上的截距相等,求l的方程;(2)假设l不经过第二象限,求实数a的取值范围命题方向2 直线的一般式方程的应用典例 2 规律方法(1)在题目中出现“截距相等、“截距互为相反数、“一截距是另一截距的几倍等条件时要全面考察,直线l不经过某象限不要漏掉过原点的情况(2)由直线的一般式方程AxByC0(A2B20)求直线在两轴上的截距时,令x0得纵截距;令y0得横截距由两截距位置可知直线的位置跟踪练习2设直线l的方程为2x(k3)y2k60(k3),根据以下条件分别确定k的值:(1)直线l
4、的斜率为1;(2)直线l在x轴,y轴上的截距之和等于0. 求过点A(2,2)且分别满足以下条件的直线方程:(1)与直线l:3x4y200平行;(2)与直线l:3x4y200垂直命题方向3 平行与垂直的应用典例 3 规律方法1.与直线AxByC0平行的直线可设为AxBym0(mC),与直线AxByC0垂直的直线可设为BxAym0.2直线l1A1xB1yC10,直线l2:A2xB2yC20假设l1l2那么:A1A2B1B20;假设A1A2B1B20那么l1l2.假设l1l2,那么A1B2A2B10,反之假设A1B2A2B10,那么l1l2或l1与l2重合3过一点与直线平行(垂直)的直线方程的求法:
5、(1)由直线求出斜率,再利用平行(垂直)的直线斜率之间的关系确定所求直线的斜率,由点斜式写方程;(2)可利用如下待定系数法:与直线AxByC0平行的直线方程可设为AxByC10,再由直线所过的点确定C1;与直线AxByC0垂直的直线方程可设为BxAyC20,再由直线所过的点确定C2.跟踪练习3(1)过点(1,0)且与直线x2y20平行的直线方程是()Ax2y10Bx2y10C2xy20Dx2y10(2)直线l过点(1,2)且与直线2x3y40垂直,那么l的方程是()A3x2y10B3x2y70C2x3y50D2x3y80AA1点线接合关系假设点P在曲线(直线)C上,那么点P的坐标满足曲线(直线
6、)C的方程,反之也成立典例 4 A 跟踪练习42a13b11,2a23b21,那么过点A(a1,b1),B(a2,b2)的直线方程为_.解析由条件知,点A,B的坐标满足方程2x3y1,又经过A,B两点有且仅有一条直线,过A,B的直线方程为2x3y1.2x3y1 2过直线定点 直线(21)x(1)y40恒过定点_.(1,3)典例 5 两直线l1:xmy60,l2:(m2)x3y2m0,当l1l2时,求m的值错解由13m(m2)0,得m1或3.错因分析因存在斜率的两直线平行的等价条件为斜率相等且截距不等,所以上述解法忽略检验截距是否相等正解由13m(m2)0得,m1或m3.当m1时,l1:xy60,l2:3x3y20.两直线显然不重合,即l1l2.当m3时,l1:x3y60,l2:x3y6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全员A练习题
- 眼科三基习题库(附答案)
- 数字化医疗健康数据共享协议
- 贵州国企招聘2025纳雍县鸽子花农业有限公司招聘10人笔试参考题库附带答案详解
- 2025河南中原特钢技术(管理)人才招聘33名笔试参考题库附带答案详解
- 2025年随州国投集团公开招聘42名工作人员笔试参考题库附带答案详解
- 2025年中国检验认证集团河南公司招聘30人笔试参考题库附带答案详解
- 2025内蒙古中材科技(锡林郭勒)风电叶片有限公司招聘32人笔试参考题库附带答案详解
- 2025中储粮(海南)有限公司招聘19人笔试参考题库附带答案详解
- 初中数学跨学科教学的创新实践与路径探索
- 山西省原民办代课教师基本情况花名表
- TCECS 720-2020 钢板桩支护技术规程
- 巡察工作流程图1
- 金工实训教程完整版课件全套课件
- Q∕GDW 12068-2020 输电线路通道智能监拍装置技术规范
- 药品经营企业质量管理工作流程图资料
- 1干混砂浆的工艺流程
- 思想政治教育心理学教学大纲
- 离子交换器用户手册
- 石子检验报告(共5页)
- 地基承载力与击数对照表(轻)
评论
0/150
提交评论