下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上1.半导体固溶体是由两种或两种以上同一类型的半导体材料组成的合金,且一般都是组分连续固溶体。半导体固溶体的组成元素的含量可在固溶度范围内连续变化,其半导体及相关性质也随之变化。2.等电子杂质等电子杂质是一种重要的深能级杂质,在半导体光电子器件中往往起着关键作用。例如,在GaP和GaAsP中,V族杂质N 可取代P而成为束缚一个电子的陷阱,V族杂质Bi也可取代P而成为束缚一个空穴的陷阱这种陷阱都称为等电子陷阱,相应的杂质都称为等电子杂质(因为杂质原子与它所取代的母体原子都具有相同的价电子数)。但并不是任何等电子杂质都可以成为陷阱。而只有那些原子半径很小的杂质可以束缚电子,
2、而原子半径远大于被取代的母体原子的杂质才可以束缚空穴。3.(生长后的热处理工艺中的)退火退火处理就是将晶体加热到其固相线以下的某个温度(一般为固相线以下50100),恒温一段时间后再缓慢地降至室温。之所以进行退火处理是因为晶体生长是一个动态过程,不易保证温度不波动,而温度波动又可造成晶体内成分不均匀,且会引起一定的热应力。4.分凝系数对于固相-液相的界面,由于杂质在不同相中的溶解度不一样,所以杂质在界面两边材料中的浓度分布是不同的,这就是所谓杂质的分凝现象。这种杂质分凝作用的大小常常用所谓的分凝系数k来描述:即k=CS/CL。CS杂质在固相中的浓度,CL杂质在液相中的浓度。5.共晶反应 (以二
3、元系为例) 二元系内一种3相共存的情况:6.电子迁移率电子迁移率是指电子在单位电场作用下的平均漂移速度,即电子在电场作用下运动速度的快慢的量度。半导体晶体中,迁移率直接与电子在晶体中碰撞间的平均自由时间相关,而平均自由时间则取决于各种散射的机制。其中最重要的两个机制为晶格散射及杂质散射。7.宽带隙半导体材料室温下禁带宽度大于2.2 eV的半导体。主要用于短波长发光器件、紫外光探测和高温、高功率电子器件。常见的氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它们的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;8.本征
4、点缺陷具有本征点缺陷的晶体,是指那些虽不含有外来杂质,但因其结构并不完善而形成点缺陷的晶体。这类晶体结构的不完善性表现为以下几种情况:(1)晶体中各组分偏离化学计量比;(2)点阵格位上缺少某些原子;(3)在格位间隙的地方存在间隙原子;(4)一类原子占据了另一类原子应该占据的格位。这样就在晶体中相应地形成了空位缺陷、间隙原子缺陷和错位缺陷(反结构缺陷、反位缺陷)等。9.均匀成核在相变或晶体生长过程中,新相核的发生和长大称为成核过程。所谓均匀成核,是指晶核在母相区域内各处的成核机率是相同的,而且须要克服相当大的表面能位垒,即须要相当大的过冷度才能成核10. 非均匀成核在相变或晶体生长过程中,新相核
5、的发生和长大称为成核过程。在实际的体系中,新相常以某些不均匀的部位作为核心而成长,例如过饱和的水蒸气常以灰尘为核心而凝聚成水滴,这种过程称为非均匀成核11.体系指我们所选定的研究对象,你研究什么物质,该物质就称为体系。体系以外与体系有相互作用的一切物质叫环境。例如,当我们研究甲醇水溶液的性质时,可以把一杯甲醇水溶液放在冰浴中,由于溶液是我们研究的对象,则溶液为体系;而烧杯和溶液上面的大气及冰浴,则为环境。12. THM方法、布里奇曼方法、区熔晶体生长方法(zone melting) 13.目前在GaAs工艺中用得最多的施主杂质是什么?为什么?14 .SI-GaAs是如何获得的?深能级杂质在提高
6、材料电阻率上是如何起作用的?什么是相变驱动力,三种系统的驱动力各是什么?15.试用类氢模型来进行估算GaAs晶体中的浅施主和浅受主的电离能Ei。,并根据计算结果说明杂质电离情况.Ei=13.6(1/e2)(m*/m0) 施主电离能EiD0.005eV, 受主电离能EiA 0.045eV(0.039) 因此,对n型GaAs。即使在液氮温度(77K)下,其中的施主也将是全电离的。2分从而一般掺杂浓度的n型GaAs都将是简并的。16.指出下列材料是n型半导体,还是p型半导体;(1)GaAs中掺Zn;(2)InAs中合有稍微过量一点的In;(3)富Te条件下熔体生长的CdTe;(4)CdTe中掺入足够
7、多的In;(5)WO2.999 17、简述什么是组分过冷,并作图说明。 答: 掺杂的熔体在生长过程中如果有效分凝系数ke1,固相中的杂质将不断地排向熔体,这样固液界面处将形成一个杂质富集区,它的分布情况如图中的C曲线所示。由于杂质增加,液相线在界面附近将会下降,如图中的TE曲线所示。如果熔体中的实际温度分布如TA所示,则将TA与TE相交的阴影区称为组分过冷区。处于这个区域的熔体,由于实际温度低于其液相线(TE),于是平坦界面的稳定性就会破坏,并转变为胞状界面。在这种条件下,生长会出现胞状组织、枝蔓结晶以及溶质尾迹等严重破坏晶体完整性的现象。18、题图为二元化合物相图,请(1)指出当体系的组分和
8、压力处在图中各区域(包括线)给出的条件时,体系的状态; (2)指出共晶成分点和包晶成分点; (3)指出稳定化合物成分点(位置),该化合物是否为同成分熔化化合物? (4)假定有总组分在r点的物料(体系)从s点开始冷却到室温(即降温到r点),说明在此过程中体系的相变历程和各相组成变化过程;(5)体系从s点回到r点后,各相的相对含量各为多少? (设AmBn为A2B3 ,r点B的含量为摩尔比80%,b点B的含量为摩尔比95%)(1)1:L;2:;3:;4:+L;5:L+;6:L+AmBn;7:AmBn+;8:+ Qmv为发生包晶反应的三相共存区;(2)p为共晶成分点;m点为包晶成分点(这里是化合物);
9、(3)m点或AmBn;(4)LL+到qmv区后发生如下包晶反应(L+AmBn)直到液相消失AmBn+当温度降到t点后,液相成分沿tq线变化,相成分沿uv线变化;当温度降到w点后进入到三相共存区,液相成分已变到q,相的成分已变到v,然后在恒温下发生包晶反应(L+AmBn)直到液相完全消失后温度继续下降,成为AmBn和两相固溶体,其中相成分沿vb线变化。(5)回到r点后,成为AmBn和两相固溶体,AmBn /=(95-80)/(80-60)=3/419化合物半导体材料,以砷化镓(GaAs)为例,有以下几个特点,一是发光效率比较高,二是电子迁移率高,同时可在较高温度和在其它恶劣的环境下 工作,特别适
10、合于制作超高速、超高频、低噪音的电路,它的另一个优势是可以实现光电集成,即把微电子和光电子结合起来,光电集成可大大的提高电路的功能和 运算的速度。20氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;21什么是高电子迁移率晶体管(HEMT)22黄铜矿(CuFeS2)是典型的三元系化合物半导体,其原子排列的基本重复单元仍是四面体,但不再像金刚石或闪锌矿结构那样具有立方对称性。分子相当于两个ZnS分子的组合,只是其中的Zn分别被一个Cu和一个Fe所取代。因此,黄铜矿结构的
11、晶胞可以用两个相邻的闪锌矿晶胞组合而成,只是要按照上述法则将其中的全部Zn原子用Cu原子和Fe原子替换。可以将这一结构看成是两个II-VI族化合物分子之中的II族原子被一个III族和一个I族原子取代之后的结果,例如CuInS2、AgGaS2等。同样,如果利用一个II族原子和一个IV族原子取代两个III-V族化合物分子中的III族原子,也会得到一系列II-IV-V2族三元化合物,例如CdGeAs2、ZnSnAs2、CdGeP2、ZnSnP2等。所有这些三元化合物都被统称为黄铜矿型化合物半导体。以此类推,四元化合物I2-II-IV-VI4可以看作分别用一个II族原子和一个IV族原子代替两个I-II
12、I-VI2三元化合物分子中的III族原子而构成。例如,Cu2FeSnS4可以认为是Fe原子和Sn原子取代了CuAlS2分子中的Al原子,Cu2CdSnTe4可以认为是Cd原子和Sn原子取代了CuAlTe2分子中的Al原子。这些材料就是所谓的黄锡矿,也具有半导体性质。23固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。其晶格常数a服从Vegard关系,对于由A、B两种材料组成的固溶体,其晶格常数aAB=xaA+(1-x)aB 固溶体直接能隙随组分比变化的函数关系,通常有两种方式来进行定量的描述。某些固溶体的直接能隙可表示为组分比x的线性函数,即 1.8式中,和分别是互溶材料A
13、和B的直接能隙宽度。但是,大多数固溶体直接能隙随组分比的变化不符合上述线性规律,但可用以下模型统一表示:Eg=a+bx+cx2 1.9式中,a、b、c皆为常数。 24固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。其晶格常数a服从Vegard关系,已知CdTe和ZnTe的晶格常数分别为,试计算Cd0.9Zn0.1Te、的晶格常数25固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。试计算Cd0.9Zn0.1Te的禁带宽度Egap(ev)=1.606+0.322x+0.463x226电子迁移率是指电子在单位电场作用下的平均漂移速度,即电子在电场作用下运动速度
14、的快慢的量度。半导体晶体中,迁移率直接与电子在晶体中碰撞间的平均自由时间相关,而平均自由时间则取决于各种散射的机制。其中最重要的两个机制为晶格散射及杂质散射。晶格散射归因于在任何高于绝对零度下晶格原子的热振动。这些振动扰乱了晶格的周期势场,并且允许能量在载流子与晶格间相互转移。既然晶格振动随温度增加而增加,在高温下晶格散射自然变得显著,迁移率也因此随着温度的增加而减少。27如果各种缺陷在整个晶体中杂乱无序地分布着,那么就存在一定的机会,使得两个或更多的缺陷可能会占据着相邻的格位。这样它们就可以互相缔合,形成缺陷的缔合体,可以生成二重、三重缔合体。缺陷浓度低时这种相邻缺陷的缔合数就少。缺陷之间最
15、重要的吸引力是具有异性电荷缺陷之间的库仑引力。另一方面由于热运动,缔合起来的缺陷也可以以一定的几率分解为单一的缺陷。因此在低温下以及在没有动力势垒的情况下,容易产生缔合缺陷;反应温度愈高,则缔合缺陷的浓度也愈小。28气相晶体生长方法已经获得很大的发展,演变出多种晶体生长技术。基本上可以按照如下方法归纳为物理气相生长方法和化学气相生长方法两大类:(1)物理气相生长包括升华-凝结法、物理气相输运法、分子束法、阴极溅射法。(2)化学气相沉积包括气体分解法、气体合成法、多元气相反应法(如金属有机物化学气相沉积法等)、化学气相输运法、气-液-固生长法(VLS)。29坩埚材料的选择是晶体生长过程能否实现以
16、及晶体结晶质量优劣的控制因素之一。坩埚材料的选择是由所生长的晶体及其在熔融状态下的性质决定的。对给定的晶体材料,所选坩埚材料应该满足以下物理化学性质:(1)有较高的化学稳定性,不与晶体或熔体发生化学反应。(2)具有足够高的纯度,不会在晶体生长过程中释放出对晶体有害的杂质、污染晶体材料,或与晶体发生粘连。(3)具有较高的熔点和高温强度,在晶体生长温度下仍保持足够高的强度,并且在高温下不会发生分解、氧化等。(4)具有一定的导热能力,便于在加热区对熔体加热或在冷却区进行晶体的冷却。但导热能力太强对晶体生长是不利的。坩埚的导热特性对晶体生长过程的影响较为复杂,通过具体的传热计算才能准确理解。(5)具有
17、可加工性,便于根据晶体生长的需要加工成不同的形状。特别是在生长高蒸气压或易氧化的材料时,要进行坩埚的焊封,对其可加工性和高温强度要求更高。(6)具有与晶体材料匹配的热膨胀特性,不会在晶体生长过程中对晶体形成较大的压应力,并在晶体生长结束后易于取出。30. 在Bridgman晶体生长技术的温场设计中,结晶点温度应该设置在温场中的哪个位置?试从对晶体质量影响因素方面进行分析。Bridgman晶体生长技术的温场分布分为高温区(加热区)、梯度区、低温区(散热保温区)三部分。加热区的作用是将原料加热熔化,使原料成为高于结晶温度并具有一定的过热度的高温熔体,让高温熔体有一定的过热度,可以避免各种成核事件的
18、发生,有利于获得完整单晶;保温区的目的是使得生长完成的整个“生长态晶体”维持在一个低于结晶点温度的恒温区中,即使得整个熔体在结晶完成后处在一个恒温区中这样可以减少热应力的产生。梯度区是结晶生长区,进入该区的熔体在到达(或温度下降到)结晶点温度以下后,熔体获得一定的过冷度后随即成核结晶,并逐渐长大,结晶温度点肯定在梯度区。但是如果将结晶温度点设计在梯度区中靠近高温区的位置,势必会使高温区温度接近结晶温度,高温熔体的过热度不足够大(液相部分梯度区短),容易导致成核事件(均匀成核和非均匀成核)的发生,不利于获得单晶。此外由于结晶温度点靠近高温区,使得生长完成的晶体要经过很长的梯度区才能进入到保温恒温
19、区中,使得整个晶体长时间处于温度不一致的梯度区中(固相部分梯度区长),使得晶体有较大的热应力产生。如果将结晶温度点设计在梯度区中靠近低温区的位置,似乎能避免上述缺点,但是根据对Bridgman晶体生长炉内的热流分布分析,在梯度区中靠近低温区的位置,炉膛内的等温面是凹的。因为只有在炉膛加热区和散热区分界面(即梯度区1/2处)是平的等温面,该面的上方(即靠近加热区部分)是凸的等温面,下方(散热区部分)是凹的等温面。而为了生长质量良好的晶体,在晶体生长过程中希望结晶界面是平界面或微凸界面。即如果将结晶温度点设计在梯度区中靠近低温区的位置,将得到凹陷的等温面或固液界面。所以综上考虑,结晶温度点应该选择
20、在梯度区的中间点或略上的位置,这样既可以获得微凸的结晶界面,同时又可以使高温熔体有足够的过热度,同时完成结晶的晶体也能尽快进入恒温区。31. 设计采用移动溶剂熔区法制备CdZnTe晶体的工艺方案,并说明理由。采用该方法有何优点?生长工艺的步骤为:分别配制多晶原料棒和富Te合金圆块以及准备直径与原料棒合金圆块一致的籽晶;然后按次序将籽晶、富Te合金以及多晶原料棒装入石英坩埚;将坩埚抽高真空后用氢氧焰将坩埚熔封密闭;随后就可以放入晶体生长炉进行生长。多晶原料棒配制按化合物成分配制,如果生长Cd0.9Zn0.1Te晶体,则Cd/Zn按9:1摩尔比称量,Te按与(Cd+Zn)量1:1摩尔比配。配料完成
21、后先真空封入合料石英管,并放入摇摆炉进行合料,将Te、Zn、Cd三元素加热到熔点以上反应形成多晶原料棒。富Te合金的配料根据晶体生长温度按相图中液相Te和CdTe两相区的液相线配制,与多晶棒类似方法,放入摇摆炉内合成合金块。籽晶采用切、磨、抛方式获得,并清洗干净待用,籽晶晶向采用(111)方向。从相图上看,液相Te和CdTe固相的两相区的液相线在4491099之间,所以理论上在该温度区间内都是可以进行溶剂法生长的,建议采用900,该生长温度下获得的晶体具有较好完整性,但是溶解其中的Te的含量也是最高的。所以为了避免晶体在从生长温度降低到室温时因Te的脱溶而在晶体中形成微沉淀。晶体生长完成后可采
22、用快速降温的方法,避免微沉淀的产生。同时为了消除快速降温在晶体内部造成的热应力的产生,可在相对较低的温度下进行一定时间的退火处理。如果晶体生长温度采用800或更低,则由于晶体 中Te含量较低,从相图上看降温时就不会有脱溶形成微沉淀的现象,此时生长完成后的降温就可以采用慢速降温的方式,以消除热应力。该方法的优点:生长温度低 移动溶剂法可以在比准化学计量比晶体的熔点低得多的温度下进行晶体生长,所以可以减少来自石英安瓿的沾污,并能有效减少晶体中的结构缺陷,生长应力也可以改善; 提纯作用 移动溶剂法存在区熔的过程,所以有提纯作用,碲溶剂有吸收CZT晶体中的杂质的作用,当结束晶体生长后,杂质将富集到作为溶剂的碲中,这些因素都将有利于获得高纯CZT晶体。32试从CdTe相图的精细结构来分析,在富Te熔体中生长CdTe晶体时采用布里奇曼方法与采用移动溶剂法(也称移动加热器法)对晶体中夹杂或沉淀的影响,从熔体或溶液中生长晶体时减少Te夹杂出现的关键是什么?用传统Bridgman法生长CdTe时难以消除Te夹杂的困难是什么?用传统Bridgman法生长在富Te熔体中生长CdTe晶体时,结晶完成后晶体中的Te含量什么有关?富余的Te将以何种形式方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省资阳市安岳中学2025-2026学年八年级上学期期末考试道德与法治试卷(含答案)
- 湖北省黄冈市黄梅县育才高级中学2025-2026学年高二上学期1月月考地理试题(含答案)
- 高强钢在钢结构中的应用要点
- “十五五”系列研究报告:产业政策迈向2035年的关键密码
- 2026山东聊城要素综合服务有限公司招聘1人备考考试题库及答案解析
- 2026年聊城市中医医院“水城优才”青年人才引进备考考试题库及答案解析
- 2026广东广州市增城区华南师范大学附属朱村实验小学临聘教师招聘考试备考试题及答案解析
- 公厕专项施工方案(3篇)
- 爱心会员活动策划方案(3篇)
- 广场水电施工方案(3篇)
- DB37-T 5316-2025《外墙外保温工程质量鉴定技术规程》
- 山东省德州市乐陵市2024-2025学年七年级上学期期末考试英语试(答案无听力原文及音频)
- 2024年彩钢瓦安装合同范本
- 《冠心病》课件(完整版)
- 人教版(2024)六年级全一册 第17课 设计我的种植园
- 小学三年级上册数学期末测试卷(满分必刷)
- 供货方案-生产供货实施方案-供货方案
- 一种电子烟烟弹和电子烟的制作方法
- 场地平整施工组织说明
- 案例pcs7中datamonitor使用入门
- 创伤性迟发性颅内血肿
评论
0/150
提交评论