2016年-2019年立体几何大题全国卷高考真题及答案_第1页
2016年-2019年立体几何大题全国卷高考真题及答案_第2页
2016年-2019年立体几何大题全国卷高考真题及答案_第3页
2016年-2019年立体几何大题全国卷高考真题及答案_第4页
2016年-2019年立体几何大题全国卷高考真题及答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上1、(2015年1卷18题)如图,四边形ABCD为菱形,ABC=120°,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.试题解析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由ABC=120°,可得AG=GC=.由BE平面ABCD,AB=BC可知,AE=EC,又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,EGFG,ACFG=G,EG平面AFC,EG面A

2、EC,平面AFC平面AEC. ()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 2、(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, ,且二面角D-AF-E与二面角C-BE-F都是(I)证明:平面ABEF平面EFDC;(II)求二面角E-BC-A的余弦值试题解析:(I)由已知可得,所以平面又平面,故平面平面(II)过作,垂足为,由(I)知

3、平面以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系由(I)知为二面角的平面角,故,则,可得,由已知,所以平面又平面平面,故,由,可得平面,所以为二面角的平面角,从而可得所以,设是平面的法向量,则,即,所以可取设是平面的法向量,则,同理可取则故二面角的余弦值为3(2016年2卷19题)(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,EF交BD于点H.将DEF沿EF折到的位置.(I)证明:平面ABCD;(II)求二面角的正弦值.【解析】证明:,四边形为菱形,;又,又,面建立如图坐标系,设面法向量,由得,取,同理可得面的法向量,

4、4、(2017年1卷18题)如图,在四棱锥中,中,且(1)证明:平面平面;(2)若,求二面角的余弦值【解析】 (1)证明:,又,又,、平面平面,又平面平面平面(2)取中点,中点,连接,四边形为平行四边形由(1)知,平面平面,又、平面,又,、两两垂直以为坐标原点,建立如图所示的空间直角坐标系设,、,、设为平面的法向量由,得令,则,可得平面的一个法向量,又知平面,平面,又平面即是平面的一个法向量,由图知二面角为钝角,所以它的余弦值为5(2018年1卷18题)如图,四边形为正方形,分别为,的中点,以为折痕把折起,使点到达点的位置,且证明:平面平面;求与平面所成角的正弦值解答:(1)分别为的中点,则,

5、又,平面,平面,平面平面.(2),又,平面,设,则,过作交于点,由平面平面,平面,连结,则即为直线与平面所成的角,由,而,与平面所成角的正弦值.6.(2018年新课标理)如图,在三棱锥P­ABC中,ABBC2,PAPBPCAC4,O为AC的中点.(1)求证:PO平面ABC;(2)若点M在棱BC上,且二面角M­PA­C为30°,求PC与平面PAM所成角的正弦值.【解析】(1)证明:ABBC2,AC4,AB2BC2AC2,即ABC是直角三角形.又O为AC的中点,OAOBOC.PAPBPC,POAPOBPOC.POAPOBPOC90°.POAC,PO

6、OB,OBAC0,PO平面ABC.(2)以O坐标原点,OB,OC,OP所在直线分别为x,y,z轴建立空间直角坐标系如图所示.易知A(0,2,0),P(0,0,2),C(0,2,0),B(2,0,0),(2,2,0).设(2,2,0),01,则(2,2,0)(2,2,0)(22,22,0),则平面PAC的一个法向量为m(1,0,0).设平面MPA的法向量为n(x,y,z),则(0,2,2),则n·2y2z0,n·(22)x(22)y0.令z1,则y,x,即n.二面角M­PA­C为30°,cos 30°,即,解得或3(舍去).n(2,1)

7、,(0,2,2).PC与平面PAM所成角的正弦值sin |cos,n|.18(2019年1卷18题)(12分)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值解答】(1)证明:如图,过N作NHAD,则NHAA1,且,又MBAA1,MB,四边形NMBH为平行四边形,则NMBH,由NHAA1,N为A1D中点,得H为AD中点,而E为BC中点,BEDH,BEDH,则四边形BEDH为平行四边形,则BHDE,NMDE,NM平面C1DE,DE平面C1DE,MN

8、平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(,2),M(,1,2),A1(,1,4),设平面A1MN的一个法向量为,由,取x,得,又平面MAA1的一个法向量为,cos二面角AMA1N的正弦值为8(12分)(2019年新课标理)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值.解:(1)由已知得,平面,平面,故又,所以平面(2)由(1)知由题设知,所以,故,以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论