




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上2018最新版八年级数学上册知识大全第一章 分 式一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。二、与分式有关的条件分式有意义:分母不为0() 分式无意义:分母为0()分式值为0:分子为0且分母不为0()三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:,其中A、B、C是整式,C0。拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。四、分式的约分1定义:根据分式
2、的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。2步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。3注意:分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。 分子分母若为多项式,先对分子分母进行因式分解,再约分。4最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。约分时。分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1定义:把几个异分母
3、的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 (依据:分式的基本性质!)2最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。通分时,最简公分母的确定方法:1系数取各个分母系数的最小公倍数作为最简公分母的系数.2取各个公因式的最高次幂作为最简公分母的因式.3如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.六、分式的四则运算与分式的乘方1、 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:2、 分式的乘方:把分子、分母分别乘方。
4、式子表示为:3、 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为:异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。4、 分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。加减后得出的结果一定要化成最简分式(或整式)。七、整数指数幂 引入负整数
5、、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即: () ) () (任何不等于零的数的零次幂都等于1)其中m,n均为整数。八、分式方程的解的步骤:去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为0。九、列分式方程基本步骤:审:仔细审题,找出等量关系。设:合理设未知数。列:根据等量关系列出方程(组)。
6、解:解出方程(组)。验:检验 答:答题。第二章 三角形1、三角形: 定义:不在同一条直线上的三条线段首尾顺次相接所组成的图形,叫做三角形,(1)三角形用符号“”表示,顶点是A、B、C的三角形,记作“ABC”, 读作“三角形ABC”。(2)组成三角形的三条线段叫做三角形的边,(3)A、B、C为ABC的三个内角,也称三角形的角。2、 三角形的分类(1)按边分类:(2)按角分类:三角形 ·锐角三角形,即三个内角都是锐角的三角形;·直角三角形,即有一个内角是直角的三角形,常用“Rt”表示直角三角形·钝角三角形,即有一个内角是钝角的三角形。3、三角形的三边关系 三角形任意两
7、边之和大于第三边,任意两边之差小于第三边。(1)判断三条线段能否组成三角形的方法:当较短两边之和大于最长边时, 可以组成三角形,否则不可以组成三角形。(2)确定第三边取值范围的方法:第三边大于两边的差而小于两边的和。4、三角形的三条重要线段:角平分线、中线和高线。(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点 之间的线段叫做三角形的角平分线。(2)三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。(3)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的 线段叫做三角形的高线,简称为三角形的高。区别相同角平分线平分内角三条角平分线都一定在三角形内部
8、1、都是线段2、都从顶点画出3、所在直线相交于一点中线平分对边三条中线都在内部,平分三角形面积高线垂直于对边或其延长线锐角三角形三条高线都在三角形内部直角三角形其中两条恰好是直角边钝角三角形其中两条在三角形外部5、三角形中三角的关系(1)三角形内角和定理:三角形的内角和为1800。(2)三角形外角和定理:三角形的外角和为360°(3)三角形的一个外角等于与它不相邻的两个内角的和.(4)三角形的一个外角大于与它不相邻的任何一个内角6、三角形有稳定性、 四边形有不稳定性.7、定义:对一个概念含义加以描述说明或作出明确规定的语句叫做定义。8、命题:对某件事情作出判断的语句(陈述句)叫做命题
9、。(1)命题由题设和结论两部分组成,常可写成“如果那么”的形式。(2)正确的命题称为真命题,错误的命题称为假命题。(3)一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称 为互逆命题9、定理:经过证明为真的命题叫做定理。10、公理:人们长期以来在实践中总结出来的命题叫做公理。 11、等腰三角形 定义:有两边相等的三角形叫做等腰三角形 性质:(1)等腰三角形的两腰相等,两底角相等(2)等腰三角形的顶角平分线、底边上的高、底边上的中线重合(三线合一)(3)等腰三角形是轴对称图形。 判定(1)定义法(2)有两角相等的三角形是等腰三角形。12、等边三角形定义:三边相等的三角形叫做等边三角形
10、性质:(1)等边三角形的三边相等;三角相等,每个角都是60度(2)等边三角形每个的角平分线、对边的高、对边的中线重合(三线合一)(3)等边三角形是轴对称图形,有三条对称轴。判定(1)定义法(2)三个角相等的三角形是等边三角形(3)有一个角等于60度的等腰三角形是等边三角形13、线段的垂直平分线(中垂线)(1)垂直且平分一条线段的直线叫做这条线段的垂直平分线(中垂线)(2)线段垂直平分线上的点到线段两端点的距离相等。(3)到线段两端点的距离相等的点在线段垂直平分线上。14、全等图形:两个能够重合的图形称为全等图形。(1)全等图形的形状和大小都相同。(2)全等图形的对应角和对应线段分别相等。(3)
11、全等图形的面积或周长均相等。15、全等三角形定义:能够完全重合的两个三角形叫做全等三角形,(1)用符号“”表示,读作“全等于”,对应顶点的字母写在对应的位置上(2)相互重合的边叫做对应边,相互重合的角叫做对应角性质:(1)全等三角形的对应边、对应角相等。(2)全等三角形的对应角平分线、对应高、对应中线相等(3)全等三角形的面积相等、周长相等判定(1)两边及其夹角对应相等的两三角形全等,简写为“边角边”或“SAS”(2)两角及其夹边对应相等的两三角形全等,简写为“角边角”或“ASA”(3)两角及其中一角的对边对应相等的两三角形全等。“角角边”或“AAS”。(4)三边对应相等的两个三角形全等,简写
12、为“边边边”或“SSS”。第三章 实 数1。平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。(2)性质:当0时,0;当时,无意义;。2。立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:;3。实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数和分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。(书上有图)4、无理数:无限不循环小数5。与实数有关的概念: 第四章 一元一次不等式和不等
13、式组一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。 一元一次不等式的所有解组成的集合是一元一次不等式的解集。注:其标准形式: ax+b0或ax+b0, ax+b0或ax+b0(a0) <>二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。说明:解一元一次不等式和解一元一次方程类似不同的是:一元一次不等式两
14、边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方三、一元一次不等式组 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。 说明:判断一个不等式组是一元一次不等式组需满足两个条件:组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多 四、一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分叫做这个一元一次不等式组的解集一元一次不等式组的解集通常利用数轴来确定五、不等式组解集的确定方法,可以归纳为以下四种类型()的解集是,如下图: 的解集是
15、,如下图: 同大取大 同小取小的解集是,如下图: 无解,如下图: 大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤 (1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集七、一元一次不等式的综合应用第五章 二次根式一、 二次根式的概念一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号。 正确理解二次根式的概念,要把握以下五点:(1) 二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“”,我们一般省略根指数2,写作“”。如可以写作。(2) 二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
16、(3) 式子表示非负数a的算术平方根,因此a0,0。其中a0是有意义的前提条件。(4) 在具体问题中,如果已知二次根式,就意味着给出了a0这一隐含条件。(5) 形如b(a0)的式子也是二次根式,b与是相乘的关系。要注意当b是分数时不能写成带分数,例如可写成,但不能写成2 。二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意(a0)的性质0(a0)一个非负数的算术平方根是非负数。(1)二次根式的非负性(0,a0)应用较多,如:+=0,则a+1=0,b-3=0,即a= -1,b=3;又如+,则x的取值范围是x-a0,a-x0,解得x=a。(2)具有非负性的性质:a20;a0;0(a0
17、)。(3)若a2+b+=0,则a=0,b=0,c=0,即若几个非负数的和等于0,则这几个非负数分别等于0。(a0)的最小值为0。()2(a0)的性质()2 = a(a0)一个非负数的算术平方根的平方等于它本身。正用公式:()2 =5;()2=m2+1;逆用公式:若a0,则a=()2如:2=()2,=()2逆用公式可以在实数范围内分解因式,如a2-5=a2-()2 =(a+)(a-)的性质=a=a(a0)或=a= - a(a0)一个数的平方的算术平方根等于这个数的绝对值。(1)正用公式:=3-=3- (2)逆用公式:3=3化简形如的式子时,先转化为a形式,再根据a的符号去掉绝对值号。()2(a0
18、)与的区别与联系:()2 区 别表示的意义不同表示非负数a的算术平方根的平方表示a2的算术平方根取值范围不同a0a为任意实数读法不同读作“根号a的平方”或“a的算术平方根的平方”读作“根号a2”或“a的平方的算术平方根”被开方数不同被开方数是a被开方数是a2运算顺序不同先开放后平方先平方后开方运算结果,运算依据不同()2 =a,依据平方与开平方互为逆运算得到依据算术平方根的定义得到作用不同()2 = a(a0),正向运用可化简二次根式,逆向运用可以将任意一个非负数写成一个数的平方的形式=a,正向运用可以将根号内的非负因式取算术平方根移到根号外,逆用运用可以将根号外的非负因式平方后移到根号内联
19、系含有两种相同的运算,都要进行平方与开方结果都是非负数;a0时,()2=二次根式的乘除1、 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。2、 单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。一、 二次根式的乘法法则=(a0,b0)即:二次根式相乘,把被开方数相乘,根指数不变(1) 进行二次根式的乘法运算时,一定不能忽略其被开方数a,b均为非负数这一条件。(2) 推广=(a0,b0,c0)ac=ac乘法交换律和结合律在二次根式的乘法中任然可应用。二、
20、二次根式乘法法则的逆用=(a0,b0)即积的算术平方根等于积中各因式的算术平方根的积利用这个性质可以把二次根式化简,在进行二次根式的化简运算时,先将被开方数进行因式分解或因数分解,然后再将能开得尽方的因式或因数开方后移到根号外。注:(1)公式中的a,b可以是数,也可以是代数式,但必须满足a0,b0,实际上,公式中的a,b是限制公式右边的,对公式的左边,只要ab0即可,如。(2)在本章中如果没有特别说明,所有的字母都表示正数。三、二次根式的除法法则=(a0,b0)即:二次根式相除,把被开方数相除,根指数不变。注:(1)a必须是非负数,b必须是正数,式子才成立。若a,b都是负数,虽然0,有意义,但
21、,在实数范围内无意义;若b=0,则无意义。(2)如果被开方数是带分数,应先将其化成假分数,如必须先化成,以免出现=×这样的错误。(3)在二次根式的计算中,最后结果应不含能开得尽方的因数或因式,同时分母中不含二次根式。四、二次根式除法法则的逆用=(a0,b0)即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。利用这个公式,同样可以达到化简二次根式的目的,在化简被开方数是分数(或分式)的二次根式时,先将其化为(a0,b0)的形式,然后利用分式的基本性质,分子和分母同乘上一个适当的因式,化去分母中的根号即可。当被开方数是带分数时,应先把它化成假分数。五、最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式。(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。对于最简二次根式的概念我们可作如下解释:(1)被开方数中不含分母,因此被开方数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿勒泰地区2024-2025学年八年级下学期语文期中模拟试卷
- 2025 年小升初厦门市初一新生分班考试英语试卷(带答案解析)-(人教版)
- 早产儿脑室内出血预防专家共识(2025)解读课件
- 湖北省2025年上半年房地产经纪人《经纪实务》:房地产市场细分原则模拟试题
- 黑龙江省哈尔滨市第六十九中学校2024-2025学年七年级上学期开学测试数学试题(含部分答案)
- 2025-2026学年苏科版八年级数学上册第一次月考测试卷(含答案)
- 祖庙租房合同范本
- 劳动合同范本装订
- 公证遗产赠予合同范本
- 网签商铺合同范本
- 2025一建《建设工程经济》计算、时间、数字考点笔记
- 校园基孔肯雅热防控措施课件
- 第1课 中国古代政治制度的形成与发展 课件 统编版高中历史选择性必修1
- (2025年标准)离职手协议书
- 2025年团场人员考试题库
- 班组质量管理
- 2025年四川省建筑施工企业安管人员考试(企业主要负责人·A类)历年参考题库含答案详解(5卷)
- 药师考试历年真题综合测试试卷(含答案)
- 实战能力评估模型-洞察及研究
- 超声引导髂筋膜阻滞技术
- 以童心为笔:基于儿童心理发展需求的小学校园公共活动空间设计
评论
0/150
提交评论