《三角形的内角》教设计(第2课时)_第1页
《三角形的内角》教设计(第2课时)_第2页
《三角形的内角》教设计(第2课时)_第3页
《三角形的内角》教设计(第2课时)_第4页
《三角形的内角》教设计(第2课时)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.?三角形的内角?教学设计第2课时 一、内容和内容解析1.内容直角三角形的性质及断定.2.内容解析直角三角形的性质是三角形内角和定理的延伸,也是以后学习“解直角三角形必备的根底;直角三角形断定是平面几何中证明垂直问题的一个常用工具;直角三角形两锐角互余和两锐角互余的三角形是直角三角形这两个定理的探究形式表达了由几何实验到几何论证的研究过程.直角三角形的性质与断定的探究形式是以三角形内角和定理为根底,定理的论证方法采取了情景创设,提出问题,动手操作,实验观察,得出结论,综合应用这样六个过程.基于以上分析,确定本节课的教学重难点分别为:教学重点:探究并掌握直角三角的性质定理和断定定理.教学难点:有

2、关推理表述及性质定理和断定和断定定理的应用.二、目的和目的解析1.目的1体验直角三角形应用的广泛性,进一步认识直角三角形.2学会用符号和字母表示直角三角形.3经历“直角三角形两个锐角互余的讨论,掌握直角三角形两个锐角互余的性质.4会用“两锐角互余的三角形是直角三角形这个断定方法断定直角三角形及证明几何中的垂直问题.2.目的解析达成目的是:情景创设,提出问题学生观察、实验,学会用几何语言表述简单的推理,在三角形内角和定理的根底论证直角三角形的性质与断定.三、教学问题诊断分析几何推理过程的书写,这是学生实现由直观图形思维到逻辑推理才能的过度,学生会感到一定的困难,教学时,老师要让每个学生在数形计算

3、根底上,引导学生总结归纳,从而发现证明思路,进一步标准推理的表述.四、教学过程设计1.创设情境 提出问题探究并证明直角三角形两个锐角互余定理问题1要求学生观察图形,找出上图中所包含的直角三角形.回忆小学已学习的直角三角形知识直角三角形及相关概念直角边、斜边等.由书本图例,让学生体验直角三角形应用的广泛性.板书:有一个角是直角的三角形叫做直角三角形.问题2三角形用什么符号表示?那么直角三角形又用什么符号表示呢?三角形ABC表示ABC,直角三角形可以用符号“Rt,如图1,直角ABC表示方法:RtABC.问题3如图2,在ABC中∠A= 60°,∠B=

4、30°,∠C等于多少度?图2学生答复:∠C= 90°.追问:你能用什么知识解决?师生活动:学生答复三角形内角和定理.设计意图:回忆小学已学习的直角三角形知识,复习三角形内角和定理及运用,为直角三角形性质及断定做铺垫.2.合作探究 形成知识问题3 请同学们画一个直角ABC,其中∠C= 90°,用量角器分别量出出∠A、∠B的度数,并且求出∠A+∠B的值.追问:通过对问题3的计算你发现∠A和∠B有什么关系?师生

5、活动:学生讨论后,小结得出:追问:结合图形你能写出、求证和证明吗?师生活动:学生答复,老师板书,师生共同完成证明过程.同时老师指出,经过证明的这个结论被称为“直角三角形性质定理.追问:此直角三角形性质用几何语言该怎样表示?几何推理过程.如图3,在RtABC中.∠A+∠B + ∠C= 180°三角形内角和定理.而∠C= 90°.∴ ∠A+∠B= 90°.∴ 直角三角形的两个锐角互余.设计意图:让学生亲历推理过程

6、,理顺证明思路,通过严格的逻辑推理证明,感悟几何证明的严密性、标准性,从而写出证明过程.3.初步应用 稳固知识运用直角三角形性质定理解决实际问题例1 如图4,∠C=∠D=90° ,AD、BC相交与点E. ∠CAE与∠DBE有什么关系?为什么?师生活动:1要想找出∠CAE与∠DBE有什么关系,它们不在同一个三角形中,通过观察它们在两个不同的直角三角形中的锐角,只要找另外两个锐角的关系即可.2学生独立完成解题过程,一名学生板书;3师生共同分析板书学生解题过程是否合理标准.设计意图: “直

7、角三角形两锐角互余及“同角或等角的余角互余的综合应用,促进学生进一步稳固定理内容.4.类比猜测 形成知识直角三角形断定定理问题4我们知道,假如一个三角形是直角三角形,那么这个三角形两锐角互余.反过来,有两个角互余的三角形是直角三角形吗?请你说说理由.师生活动:学生独立考虑,然后小组交流,并汇报交流结果.设计思路:可以独立考虑获得解决问题的思路,乐于与别人合作,与同伴交流,从中受益,培养学生团结协作的精神.问题5参照直角三角形性质的几何推理过程,断定定理几何推理过程又该怎样表示呢?推理过程如下:如图5,在ABC中.∠A+∠B+∠C= 180&

8、;deg;三角形内角和定理, ∠A+∠B=90°,∴ ∠C=90,∴ ABC是直角三角形 直角三角形定义.师生活动:学生独立考虑,然后小组交流,并互相修改.设计思路:可以主动积极参与学习活动,使用数学语言有条理地表达自己的考虑过程.5.综合运用 深化进步课堂练习1RtABC中,∠C=90°,∠B=28°,那么∠A=_.2假设∠C =∠A+∠B,那么ABC是_三角

9、形.3在ABC中,∠A=90°,∠B=3∠C,求∠B,∠C的度数.师生活动:学生口答第1、2题,第3题安排学生演板.例2 如图6,在RtABC中, 假设∠ACD=∠B,CD⊥AB,ABC中为直角三角形吗?为什么?深化进步如图7,在RtABC中∠ACB= 90 °,D、E分别在AB、AC上,假设∠AED=∠B,AED为直角三角形吗?试说明理由.设计思路:在老师完成例2的证明后由学生独立完成

10、此题,重在锻炼学生知识迁移才能.6.小结1师生一起回忆本节课所学的主要内容。直角三角形性质和断定2这一课我们是怎样探究直角三角形的性质与断定?3利用直角三角形的性质与断定分别可以解决哪些问题?死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生才能开展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为进步学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背与进步学生素质并不矛盾。相反,它恰是进步学生语文程度的重要前提和根底。7.作业一般说来,“老师概念之形成经历了非常漫长的历史。杨士勋唐初学者,四门博士?春秋谷梁传疏?曰:“师者教人以不及,故谓师为师资也。这儿的“师资,其实就是先秦而后历代对老师的别称之一。?韩非子?也有云:“今有不才之子师长教之弗为变其“师长当然也指老师。这儿的“师资和“师长可称为“老师概念的雏形,但仍说不上是名副其实的“老师,因为“老师必需要有明确的传授知识的对象和本身明确的职责。教科书第16页习题第4,第17页习题10题.其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记之后会“活用。不记住那些根底知识,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论