版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全国大学生数学竞赛(非数学类)大纲一、函数、极限、连续1 函数的概念及表示法、简单应用问题的函数关系的建立.2 函数的性质:有界性、单调性、周期性和奇偶性.3 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4 数列极限与函数极限的定义及其性质、函数的左极限与右极限.5 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7 函数的连续性(含左连续与右连续)、函数间断点的类型.8 连续函数的性质和初等函数的连续性.9 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微
2、分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(LHospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲
3、率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方
4、程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方
5、向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切
6、线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲
7、面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier
8、)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在-l,l上的傅里叶级数、函数在0,l上的正弦级数和余弦级数2009年 第一届全国大学生高等数学竞赛预赛试题及答案(非数学类)一、填空题(每小题5分,共20分)1计算_,其中区域由直线与两坐标轴所围成三角形区域.解 令,则, (*)令,则,2设是连续函数,且满足, 则_.解 令,则,,解得。因此3曲面平行平面的切平面方程是_.解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。4设函数由方程确定,其中具有二阶导数,且,则_.解法1 方程的两边对求导,得即
9、因,故,即,因此解法2 方程取对数,得 (1)方程(1)的两边对求导,得 (2)即 (3)方程(2)的两边对求导,得 (4)将(3)代入(4),得将左边的第一项移到右边,得因此二、(5分)求极限,其中是给定的正整数.解法1 因故因此解法2 因故三、(15分)设函数连续,且,为常数,求并讨论在处的连续性.解 由和函数连续知,因,故,因此,当时,故当时,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,是某二阶常系数线性非齐次微分方程的三个解,试求此微
10、分方程.解 设,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解 因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积为即令,得即因此,.七、(15分)已知满足, 且, 求函数项级数之和.解 ,即由一阶线性非齐次微分方程公式知即因此由知,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和
11、八、(10分)求时, 与等价的无穷大量.解 令,则因当,时,故在上严格单调减。因此即又,所以,当时, 与等价的无穷大量是。第二届(2010年)全国大学生数学竞赛预赛试卷及参考答案(非数学类)(150分钟)一、(25分,每小题5分)(1)设其中求(2)求。(3)设,求。(4)设函数有二阶连续导数,求。(5)求直线与直线的距离。解:(1)=(2)令x=1/t,则原式=(3)(4)略(不难,难得写)(5)用参数方程求解。答案好像是二、(15分)设函数在上具有二阶导数,并且且存在一点,使得。证明:方程在恰有两个实根。解:(简要过程)二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的
12、值,所以只需在两边找两大于0的值。将f(x)二阶泰勒展开因为二阶倒数大于0,所以,证明完成。三、(15分)设函数由参数方程所确定,其中具有二阶导数,曲线与在出相切,求函数。解:(这儿少了一个条件)由与在出相切得,=。上式可以得到一个微分方程,求解即可。四、(15分)设证明:(1)当时,级数收敛;(2)当且时,级数发散。解:(1)>0,单调递增当收敛时,而收敛,所以收敛;当发散时,所以,而,收敛于k。所以,收敛。(2)所以发散,所以存在,使得于是,依此类推,可得存在使得成立所以当时,所以发散五、(15分)设是过原点、方向为,(其中的直线,均匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量
13、;(2)求其转动惯量关于方向的最大值和最小值。解:(1)椭球上一点P(x,y,z)到直线的距离由轮换对称性,(2)当时,当时,六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线证明(2)求函数;(3)设是围绕原点的光滑简单正向闭曲线,求。解:(1) L不绕原点,在L上取两点A,B,将L分为两段,再从A,B作一曲线,使之包围原点。则有(2) 令由(1)知,代入可得上式将两边看做y的多项式,整理得由此可得解得:(3) 取为,方向为顺时针(最后一步曲线积分略去,不知答案对不对)2011年 第三届全国大学生高等数学竞赛预赛试题及答案(非数学
14、类)一计算下列各题(本题共3小题,每小题各5分,共15分,要求写出重要步骤。)(1).求;解:方法一(用两个重要极限):方法二(取对数):(2).求;解:方法一(用欧拉公式)令其中,表示时的无穷小量,方法二(用定积分的定义)(3)已知,求。解:二(本题10分)求方程的通解。解:设,则是一个全微分方程,设方法一:由得由得方法二:该曲线积分与路径无关三(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且均不为0,证明:存在唯一一组实数,使得。证明:由极限的存在性:即,又,由洛比达法则得由极限的存在性得即,又,再次使用洛比达法则得由得是齐次线性方程组的解设,则,增广矩阵,则所以,方程有
15、唯一解,即存在唯一一组实数满足题意,且。四(本题17分)设,其中,为与的交线,求椭球面在上各点的切平面到原点距离的最大值和最小值。解:设上任一点,令,则椭球面在上点M处的法向量为:在点M处的切平面为:原点到平面的距离为,令 则,现在求在条件,下的条件极值,令则由拉格朗日乘数法得:,解得或,对应此时的或此时的或又因为,则所以,椭球面在上各点的切平面到原点距离的最大值和最小值分别为:,五(本题16分)已知S是空间曲线绕y轴旋转形成的椭球面的上半部分()取上侧,是S在点处的切平面,是原点到切平面的距离,表示S的正法向的方向余弦。计算:(1);(2)解:(1)由题意得:椭球面S的方程为令则,切平面的法向量为,的方程为,原点到切平面的距离将一型曲面积分转化为二重积分得:记(2)方法一:方法二(将一型曲面积分转化为二型):记,取面向下,向外,由高斯公式得:,求该三重积分的方法很多,现给出如下几种常见方法: 先一后二:先二后一:广义极坐标代换:六(本题1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南红河州泸西大为焦化有限公司招聘2人考试参考题库及答案解析
- 2026年台州温岭市第一人民医院招聘派遣员工10人笔试备考试题及答案解析
- 2026黑龙江鸡西市鸡冠区廉洁征兵笔试备考试题及答案解析
- 2026新疆哈密市建辉国有资产管理有限公司选聘部门主管2人笔试备考试题及答案解析
- 2026年碳资产管理实务培训
- 2026四川省国投资产托管有限责任公司招聘1人笔试备考题库及答案解析
- 2026年六安霍山县事业单位公开招聘43人笔试备考题库及答案解析
- 2026年超导材料的热力学与传热学研究
- 2026年1月武夷山职业学院人才增补招聘二笔试模拟试题及答案解析
- 武汉市硚口区公立初中招聘初中教师6人考试备考试题及答案解析
- 2026届南通市高二数学第一学期期末统考试题含解析
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库有完整答案详解
- 运输人员教育培训制度
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库有答案详解
- 升降货梯买卖安装与使用说明书合同
- 河南豫能控股股份有限公司及所管企业2026届校园招聘127人考试备考题库及答案解析
- 房地产公司2025年度总结暨2026战略规划
- 物业管家客服培训课件
- (2025年)广东省事业单位集中招聘笔试试题及答案解析
- 医疗安全(不良)事件根本原因分析法活动指南团体标准2025
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
评论
0/150
提交评论