




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线线垂直、线面垂直、面面垂直部分习及答案1在四面体ABCD中,ABC与DBC都是边长为4的正三角形(第1题)(1)求证:BCAD; 2如图,在三棱锥SABC中,SA平面ABC,平面SAB平面SBC(1)求证:ABBC; 3.如图,四棱锥PABCD的底面是边长为a的正方形,PA底面ABCD,E为AB的中点,且PA=AB(1)求证:平面PCE平面PCD;(2)求点A到平面PCE的距离4. 如图2-4-2所示,三棱锥SABC中,SB=AB,SC=AC,作ADBC于D,SHAD于H, 求证:SH平面ABC.5. 如图所示,已知RtABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)
2、求证:SD平面ABC;(2)若AB=BC,求证:BD平面SAC.6. 证明:在正方体ABCDA1B1C1D1中,A1C平面BC1D 7. 如图所示,直三棱柱中,ACB=90°,AC=1,侧棱,侧面的两条对角线交点为D,的中点为M.求证:CD平面BDM. 8.在三棱锥BCD中,BCAC,ADBD,作BECD,为垂足,作AHBE于求证:AH平面BCD9. 如图,过S引三条长度相等但不共面的线段SA、SB、SC,且ASB=ASC=60°,BSC=90°,求证:平面ABC平面BSC10.如图,在长方体ABCDA1B1C1D1中,AB2,BB1BC1,E为D1C1的中点,连
3、结ED,EC,EB和DB(1)求证:平面EDB平面EBC;(2)求二面角EDBC的正切值.11:已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。求证:平面PAC平面PBC。 12. 如图1-10-3所示,过点S引三条不共面的直线,使BSC=90°,ASB=ASC=60°,若截取SA=SB=SC.求证:平面ABC平面BSC13. 如图1-10-5所示,在四面体ABCD中,BD= a, AB=AD=BC=CD=AC=a.求证:平面ABD平面BCD. 14.如图所示,ABC为正三角形,CE平面ABC,BDCE,且CE=AC=2BD,M是A
4、E的中点,求证:(1)DE=DA;(2)平面BDM平面ECA;(3)平面DEA平面ECA15.如图所示,已知PA矩形ABCD所在平面,M、N分别是AB、PC的中点(1)求证:MN平面PAD;(2)求证:MNCD;(3)若PDA=45°,求证:MN平面PCD 16. 如图1,在正方体中,为 的中点,AC交BD于点O,求证:平面MBD答案与提示:1. 证明:(1)取BC中点O,连结AO,DOABC,BCD都是边长为4的正三角形, AOBC,DOBC,且AODOO,BC平面AOD又AD平面AOD,BCAD 2. 【证明】作AHSB于H,平面SAB平面SBC平面SAB平面SBC=SB,AH平
5、面SBC,又SA平面ABC,SABC,而SA在平面SBC上的射影为SB,BCSB,又SASB=S,BC平面SABBCAB3. 【证明】PA平面ABCD,AD是PD在底面上的射影,又四边形ABCD为矩形,CDAD,CDPD,ADPD=DCD面PAD,PDA为二面角PCDB的平面角,PA=PB=AD,PAADPDA=45°,取RtPAD斜边PD的中点F,则AFPD,AF 面PAD CDAF,又PDCD=DAF平面PCD,取PC的中点G,连GF、AG、EG,则GF CD又AE CD,GF AE四边形AGEF为平行四边形AFEG,EG平面PDC又EG 平面PEC,平面PEC平面PCD(2)【
6、解】由(1)知AF平面PEC,平面PCD平面PEC,过F作FHPC于H,则FH平面PECFH为F到平面PEC的距离,即为A到平面PEC的距离在PFH与 PCD中,P为公共角,而FHP=CDP=90°,PFHPCD,设AD=2,PF=,PC=,FH=A到平面PEC的距离为4. 【证明】取SA的中点E, 连接EC,EB.SB=AB,SC=AC,SABE,SACE.又CEBE=E,SA平面BCE.BC平面BCE5. 证明:(1)因为SA=SC,D为AC的中点, 所以SDAC. 连接BD. 在RtABC中,有AD=DC=DB, 所以SDBSDA, 所以SDB=SDA, 所以SDBD. 又AC
7、BD=D, 所以SD平面ABC.(2)因为AB=BC,D是AC的中点, 所以BDAC. 又由(1)知SDBD, 所以BD垂直于平面SAC内的两条相交直线, 所以BD平面SAC.6.证明:连结AC AC为A1C在平面AC上的射影 7. 证明:如右图,连接、,则. ,为等腰三角形.又知D为其底边的中点, . , .又, . 为直角三角形,D为的中点, ,.又, .即CDDM. 、为平面BDM内两条相交直线, CD平面BDM. 8.证明:取AB的中点,连结CF,DF , , 又,平面CDF 平面CDF, 又, 平面ABE, , 平面BCD9.证明:如图,已知PA=PB=PC=a,由APB=APC=6
8、0°,PAC,PAB为正三角形,则有:PA=PB=PC=AB=AC=a,取BC中点为E直角BPC中, ,由AB=AC,AEBC,直角ABE中,在PEA中, ,平面ABC平面BPC.10. 证明:(1)在长方体ABCDA1B1C1D1中,AB2,BB1BC1,E为D1C1的中点DD1E为等腰直角三角形,D1ED45°同理C1EC45°,即DEEC在长方体ABCD中,BC平面,又DE平面,BCDE又,DE平面EBC平面DEB过DE,平面DEB平面EBC (2)解:如图,过E在平面中作EODC于O在长方体ABCD中,面ABCD面,EO面ABCD过O在平面DBC中作OFD
9、B于F,连结EF,EFBDEFO为二面角EDBC的平面角利用平面几何知识可得OF, (第10题)又OE1,所以,tanEFO 11.(1)【证明】C是AB为直径的圆O的圆周上一点,AB是圆O的直径BCAC;又PA平面ABC,BC平面ABC,BCPA,从而BC平面PACBC 平面PBC,平面PAC平面PBC . 12. 证明:如图1-10-4所示,取BC的中点D,连接AD,SD.由题意知ASB与ASC是等边三角形,则AB=AC,ADBC,SDBC.令SA=a,在SBC中,SD= a,又AD= = a,AD2+SD2=SA2,即ADSD.又ADBC,AD平面SBC.AD平面ABC,平面ABC平面S
10、BC.13. 证明:取BD的中点E,连接AE,CE.则AEBD,BDCE.在ABD中,AB=a,BE= BD= ,AE= ,同理,CE= .在AEC中,AE=EC= ,AC=a, AC2=AE2+EC2,即AEEC.BDEC=E,AE平面BCD.又AE平面ABD,平面ABD平面BCD14. 证明: (1)取EC的中点F,连接DF CE平面ABC, CEBC易知DFBC,CEDF BDCE, BD平面ABC在RtEFD和RtDBA中, , RtEFDRtDBA故DE=AD (2)取AC的中点N,连接MN、BN,MNCF BDCF, MNBDN平面BDM EC平面ABC, ECBN又 ACBN, BN平面ECA又 BN平面MNBD, 平面BDM平面ECA (3) DMBN,BN平面ECA, DM平面ECA又 DM平面DEA, 平面DEA平面ECA15. 证明:(1)取PD的中点E,连接AE、EN,则,故AMNE为平行四边形, MNAE AE平面PAD,MN平面PAD, MN平面PAD (2)要证MNCD,可证MNAB由(1)知,需证AEAB PA平面ABCD, PAAB又ADAB, AB平面PAD ABAE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信托与文化创意产业国际交流平台建设运营考核试卷
- 篷布制造与智能化生产技术考核试卷
- 珠海市珠海二中、斗门一中高三上学期期中联考地理试题
- 句容市2025届小升初常考易错数学检测卷含解析
- 宁夏长庆中学2025届高三月考试卷(四)生物试题含解析
- 南京工程学院《大数据思维与决策》2023-2024学年第二学期期末试卷
- 吉林省延边朝鲜族自治州延吉二中2025届高三年级四月调研考试语文试题含解析
- 山东省高青县重点名校2025年5月初三模拟考试生物试题试卷含解析
- 南京中医药大学翰林学院《建筑环境数值模拟》2023-2024学年第二学期期末试卷
- 吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2025届高考仿真模拟卷(二)英语试题含解析
- 遴选会计笔试真题及答案
- 2024年中国光大银行招聘考试真题
- 2025-2030中国油漆和涂料消光剂行业市场发展趋势与前景展望战略研究报告
- 2025年储能项目可行性分析报告
- 2025年山西焦煤集团国际发展股份有限公司招聘笔试参考题库附带答案详解
- 水泥装卸合同协议
- 八年级音乐上册校园的早晨省公开课一等奖新课获奖课件
- 金华兰溪市卫健系统普通高校招聘医学类笔试真题2024
- 2025年浙江省杭州市萧山区中考一模数学模拟试卷(含详解)
- 道路普通货运企业安全生产达标考评方法和考评实施细则
- DB15T 3516-2024野生动物救护站建设规范
评论
0/150
提交评论