下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、6.2平行四边形的判定1 导学案学习目标:在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法会综合运用平行四边形的判定方法和性质来解决问题学习重点:平行四边形的判定方法及应用学习难点:平行四边形的判定定理与性质定理的灵活应用学习过程:一、探索平行四边形的性质【活动一】提出问题:1.平行四边形的定义(1)四边形ABCD是平行四边形 ( 定义 )(2) 四边形ABCD是平行四边形 ( )2.平行四边形具有哪些性质?边: 。角: 。对角线: 。3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?【活动二
2、】 探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?利用手中的学具硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 的四边形是平行四边形。平行四边形判定方法2 的四边形是平行四边形。【活动三】求证:两组对角分别相等的四边形是平行四边形
3、。二、运用平行四边形的判定1、(P12例1)已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形四、当堂检测1、已知:四边形ABCD中,ADBC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).2、已知: 如图AB=DC=EF AD=BC DE=CF,则图中有哪些互相平行的线段?4如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=_ _cm,CD=_ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=_ _cm,D
4、O=_ _cm时,四边形ABCD为平行四边形5已知:如图, ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=OF教学反思:3如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现: 第4个图形中平行四边形的个数为_ _第8个图形中平行四边形的个数为_ _.4.已知:四边形ABCD中,ADBC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).5.已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)第7题图6.如图所示,ABCD中,BECD,BFAD,垂足分别为E、F,EBF=60°AF=3,CE=4.5,则C= ,AB= ,BC= .7.如图所示,在ABCD中,E,F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据 来证明.8. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为_.第9题图9.已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.第10题图10. 如图所示,BD是ABCD的对角线,AEBD于E,CFBD于F,求证:四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普工劳务合同范本
- 升学培训协议书
- 家装合同补充协议
- 帆船租赁合同范本
- 服装行业合同协议
- 果园转租合同协议
- 欠款代理合同范本
- 机械运输协议合同
- 机构教学协议合同
- 校企框架合同协议
- 2025至2030中国精炼橄榄油行业调研及市场前景预测评估报告
- 蓄水池防水施工方案及施工工艺方案
- 培优点05 活用抽象函数模型妙解压轴题 (9大题型)(讲义+精练)(解析版)-2026年新高考数学大一轮复习
- GB/T 23452-2025天然砂岩建筑板材
- 中国血液吸附急诊专家共识(2025年)
- 快递企业安全生产应急预案
- 中国软件行业协会:2025中国软件行业基准数据报告 SSM-BK-202509
- 应急预案演练记录表(火灾+触电)
- 车床大修施工方案
- 河道保洁员安全培训课件
- 连云港疫情管理办法
评论
0/150
提交评论