




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、变压吸附制二氧化碳装置技术方案及报价书报价单位:四川同盛科技有限责任公司联系人:马文君四川自贡鸿福水泥有限公司CO2 气体回收技术方案第一部分公司简介1.4 四川同盛科技有限责任公司变压吸附技术的特点:变压吸附(PSA技术是近 30 多年来发展起来的一项新型气体分离与净化技术。其技术核心由工艺流程、吸附剂、吸附塔、程控阀门、控制技术等方面组成。在工艺流程上,四川同盛科技有限责任公司开发的多塔(520 塔流程都具有因地制宜从实际出发的特点,可根据原料气组成、压力、产品质量、装置规模的不同有机地将 TSA、PSA、VPSA、多段 PSA技术结合在一起,为用户提供最合理、最经济的工艺解决方案;在吸附
2、剂研究上,同盛科技对国内外主要吸附剂生产厂家生产的吸附剂进行了大量的试验评选,筛选出了多种性能优良、价格适中的工业吸附剂。在吸附塔上,四川同盛科技有限责任公司开发了气体分布效果更好、床层死空间更小的新型结构吸附塔。在控制系统上,同盛科技开发“变压吸附专家系统”软件包可实现多塔连续自动切塔与恢复操作、变压吸附压力自适应调节、装置参数自动优化、系统安全联锁等功能,达到了国外先进水平。第二部分工艺技术方案的选择及推荐意见1.0 工艺技术方案的选提纯 CO2 的方法有多种,大致可以分为化学吸收法、物理吸收法和物理吸附法三类为了达到经济合理的建设原则,本方案选择了化学吸收法的 MEA 法(方案一和物理吸
3、附法的 PSA 法(方案二作为比较,为询价方最终决策提供依据。1.1 方案一,新型 MEA 化学吸收法化学吸收法是利用 CO2 为酸性气体可以与碱性物质反应的原理进行吸收分离。常用的碱性吸收剂有:碱金属碳酸盐水溶液,乙醇胺水溶液等。其中碳酸钠溶液吸收法具有工艺技术成熟、设备简单和投资少的特点,国内不少以石灰窑气为气源的工厂采用此法生产商品 CO2 ,但该法的主要缺点是生产率低。因此,本方案采用目前先进的 MEA 法作为技术方案。1.2 物理法物理法可分为物理溶剂吸收法、薄膜渗透法、低温蒸馏法、吸附分离法等多种技术方法。物理溶剂吸收法具有与化学吸收法相似的特点,利用液体吸收剂对 CO2 的溶解度
4、与其它气体组份不同而进行分离。常用的溶剂有水(高压水洗法、甲醇(低温甲醇洗法、碳酸丙烯酯(碳丙法等,物理溶剂吸收法要求在较高压力下进行。能耗很高,不予比较推荐。低温蒸馏法利用 N2、O2 及 CH4 等组分和 CO2 组份间沸点的差异,以蒸馏方法将 CO2 分离出来,主要应用于一些富含 CO2 的气田回收CO2,供二次采油用。不予比较推荐。膜分离法是以各种气体在薄膜材料中的渗透率不同来实现分离的方法,用于 CO2分离的膜分离器有中空纤维管束和螺旋卷板式两种,目前该法必须与其它分离工艺结合使用。不予比较推荐。1.3 方案二,PSA 吸附分离法吸附分离法则是利用吸附剂的平衡吸附量随组份分压或体系温
5、度变化而不同的特性行分离操作的,纯属简单的吸附-解吸物理过程,具有工艺简单、无毒、无污染(不污染环境和气源本身的特点,同时也不存在吸收法所要求的溶剂配制和溶剂损耗等问题。因此作为方案二,予以比较。2.0 推荐意见2.1 比较一览表:具体内容详见第三、四部分。比较结果1 装置总投资万元2210.23 2798.23 方案一好,投资少588.0 万元2 装置占地面积M2 1800 3000 方案一好,占地少1200m23 1000Nm3 纯干CO2 计成本元386.1 175 方案二好,1000m3 CO2 成本少211 元4 1 年运行总成本万元2471 1120 方案二好,每年节省成本1351
6、 万元2.2 推荐意见:两个方案优劣一目了然,推荐采用 PSA 吸附分离法。第三部分方案一新型 MEA 法水泥窑尾气提纯工业 CO2 气体装置技术方案及投资估算1.0 装置概况第一节 MEA 法技术方案文中所述压力除特别注明外,全部为表压1.1 目的:提供变压吸附法回收 CO2 装置1.2 原料气组成:(v %组分CO2 CO O2 H20 N2 N0X V% 21.2 0.2 9.4 4.6 64.6 477mg/m3 1001.3 原料气压力:常压 MPa(表压,以下同。1.4 原料气温度:1241.5 原料气流量:42000 Nm3/h,询价方可提供流量:128911Nm3/h 。1.6
7、 产品气组成CO2 纯度:CO29999.5%(气态,V%产品 CO2 气中对氮氧化物含量不作要求。1.7 产品气输出流量:8000 Nm3/h(8000 Nm3/h 100%CO21.8 产品气输出压力510KPa1.9 废气:废气输出压力 10KPa,流量:31382.4 Nm3/h,可作为反吹气体。2.0 新型 MEA 技术化学反应机理2.1 一乙醇胺(MEA产品介绍别名:2-羟基乙胺,2-氨基乙醇英文名:Monoethanolamine 分子式:H2NCH2CH2OH 分子量:61.08(按 1979 国际原子量表理化性质:常温下为无色、粘性液体,有氨味,溶于水,呈强碱性。能与水、乙醇
8、相混溶。腐蚀铜、铜化合物和橡胶。液体和蒸汽腐蚀皮肤和眼睛。可与多种酸反应生成酯、胺盐。沸点 170,熔点 10.5。技术指标:细节剂量单位标准限度含量% 99.0min水分% 0.50max色度Hazen 15max用途:用于制药工业中合成杀菌剂,止泻剂:纺织工业中的荧光增白剂;染化工业中合成高级染料;橡胶工业和油墨工业中的中和剂;也用于表面活性剂剂、防锈剂、清洗剂、防腐剂、油漆制造、有机合成原料和酸性气体吸收剂。包装:195kg/桶2.2 化学反应机理由本公司开发的新型 MEA 低分压 CO2 提纯技术,采用 MEA 为主体,配入一定量的活性胺 ACA 组成复合胺水溶液吸收剂。复合胺水溶液吸
9、收 CO2 的效果较纯 MEA 效果好,与 CO2 反应生成碳酸盐化合物,加热就可以使 CO2 分解出来。但 MEA 碱性较强,能与 CO2 进一步生成比较稳定的氨基甲酸盐。由一乙醇胺的结构式可知,每个一乙醇胺分子有一个羟基和一个胺基,通常认为羟基可降低化合物蒸气压,并增加在水溶液中的溶解度,而胺基则在水溶液中提供了所需的碱度,促使对酸性气体的吸收。一乙醇胺水溶液吸收石灰窑气中 CO2 所发生的主要反应这些反应均为可逆反应,其平衡与溶液的温度及CO2 分压有关。从化学反应计量关系可知道 MEA 的最大吸收容量为 0.5mol CO2/mol MEA,同时形成稳定的氨基甲酸盐,在解吸过程中需要较
10、多的能量才能分解,导致解吸能耗较大。氨基甲酸盐对设备的腐蚀性较强,又能形成水垢。因而,一般采用 10-12%的水溶液来回收 CO2,其酸性负荷约 0.3-0.4mol CO2/molMEA。MEA 低分压 CO2 回收新技术选用了一种活性胺,形成了以 MEA 为主体的复合胺。活性胺与 CO2 的反应机理与 MEA 不同。该活性胺与 CO2 反应不形成稳定的氨基甲酸盐,其最大吸收容量为 1 mol CO2/mol aMEA 胺。总反应方程式为:CO2 + R2NH + H2O R2NH2+ + HCO3¯ (7MEA 在回收 CO2 过程中,易与O2、CO2、硫化物、硝化物等发生化学降
11、解,也易发生热降解,尤其与石灰窑气中 O2 的氧化降解居于首位。MEA 与 O2 的降解产物主要有氨基甲醛、氨基乙酸、羟基乙酸、乙醛酸、草酸等,与 CO2 的降解产生物主要有恶唑炳酮类,1(2羟乙基咪唑啉酮和 N(2羟乙基乙二胺等。MEA 降解问题一直是 MEA 法存在的难以解决的技术难题。MEA 降解产物的形成一方面促进胺损耗,另一方面加剧设备的腐蚀以及引起溶液发泡等问题,造成生产不稳定。另外,MEA 的降解与设备腐蚀相互促进,致使降解反应发展到一定程度时,则无法用蒸馏回收来控制,此时只有停车更换溶液,给厂方造成巨大的经济损失及环境污染。针对 MEA 易与 O2、CO2 等发生降解反应的特性
12、,IST-R aMEA 低分压 CO2 回收新技术选用了一套复合防腐剂,发现了一种胺抗氧化剂,很好地解决了设备腐蚀及胺降解等问题。2HOCH2CH2NH2+CO2+H2O(HOCH2CH2NH32CO3 (1(HOCH2CH2NH32CO3+ CO2+H2O2HOCH2CH2NH3HCO3 (22HOCH2CH2NH2+ CO2HOCH2CH2NHCOONH3CH2OH (33.0 流程框图3.1 装置流程框图3.2 物料衡算:装置产品 CO2 回收率 90%气流名称单组分合计位 CO2 N2 CO O2 H2O原料气1v% 21.2 64.6 0.2 9.4 4.6 100.0(湿基 Nm3
13、/h 8904.0 27132 84.0 3948.0 1932.0 42000.0v% 99.0 0.8 0.0 0.2 0.0 100.02 产品 CO2 气3 废气Nm3/h 8013.6 67.8 0.0 13.8 0.0 8095.2v% 2.63 79.82 0.25 11.60 5.70 100.0Nm3/h 890.4 27064.2 84.0 3934.2 1932.0 33904.84.0 流程叙述与流程特点4.1 生产主流程叙述原料气进入到 CO2 吸收塔吸收 CO2,吸收 CO2 后的富液由吸收塔底引出,经富液泵加压后送入 CO2冷凝器回收再生热量,富液初步升温后进入贫
14、液换热器,与从再生塔底部出来的贫液换热,温度再次上升后进入再生塔上部进行再生反应。再生所需热量由蒸汽再沸器提供,再生塔顶出来的再生气经 CO2 富液的换热器及 CO2 冷却器水冷降温分离水份后为 99.0%产品 CO2,送出界区。4.2 全流程叙述ò将用户提供的约 0.001MPa,150的石灰窑气作为原料气,进入本装置。ò首先将原料气通过洗涤塔水洗进行降温、除尘、部分脱除氮氧化物及硫,将原料气温度降至 40,再通过鼓风机加压至0.015Pa 压力下进入吸收塔。ò水洗后的原料气进入吸收塔后,原料气中的 CO2 组份与从塔顶喷淋而下吸收液MEA(一乙醇胺 逆流接触,
15、发生反应,石灰窑气中的 CO2 被MEA 溶液吸收,形成固定的化合物,这种化合物具有很大的蒸汽压。ò未被吸收的气体作为废气从吸收塔上部排出,这部分尾气在塔顶经洗涤冷却至45,再经塔顶高效除沫器除掉夹带的 MEA 后排入大气。该洗涤液经换热器冷却后返回洗涤液贮槽,再用洗涤液泵加压再次进入吸收塔洗涤段循环洗涤,采用新鲜软水补充量控制洗涤及吸收塔液位和水平衡。ò对吸收塔吸收 CO2 过程而言,如果压力高则气相中 CO2 分压增大,吸收的推动力就增大,故高压有利于吸收,相反,如吸收压力低,则吸收推动力减少,不利于吸收;在石灰窑气回收 CO2 装置中,由于石灰窑气中 CO2 含量仅为
16、710%,压力提高虽可以减少吸收塔的直径,但电耗会相应增加,若压力过低,则为了使气体能克服设备阻力降,则需较低的空塔速度,导致吸收塔直径增加,综合以上各方面因素,一般情况下选择压力为0.0080.01MPa。ò在吸收塔吸收过程中,MEA 液不可能完全进行反应,部分未反应 MEA 溶液,会从吸收塔顶部随排放气体带走,为了降低产品生产成本,在吸收塔顶部专门设计了洗涤回收循环系统,对排放的气体进行再次洗涤,以达到降低 MEA液损耗的目的;当循环液中的 MEA 液浓度达到 1%时,向吸收-再生系统排入,减少的循环液用脱盐水进行补充。ò由于 MEA 对酸性气体,如 CO2、SO2、S
17、O3、H2S 具有较高的溶解度和吸收速率,对低分压酸性气体的脱除特别有效,根据典型石灰窑气的组成,其硫化物主要由 SO2 组成,在水洗降温过程中,大部分 SO2 被脱除,SO2在水中的溶解度能达到 95%。ò一乙醇胺是无色具有氨样气味的粘稠液体,能以任何比例溶于水,能溶于大多数含氧有机溶剂,但不溶于烃类。ò虽然上述反应都生成了固定的化合物,但在正常情况下,它们具有相当大的蒸汽压,平衡溶液的组成将随溶液面上酸性气体分压而变化,由于这些化合物的蒸汽压随温度升高迅速升高,因此加热便能使被吸收的气体从溶液中蒸发。ò从原则上讲,吸收液浓度可任意选择,但在实际生产过程中需根据
18、腐蚀性、能耗、活性组份消耗等诸多因素来确定适当的浓度,一般情况下为1520%,有时也可采用低达 10%或高达 28%浓度的吸收液,本工艺方案综合各种装置实际运行数据,把吸收液浓度控制在1520%范围内操作较佳。ò经吸收塔吸收 CO2 达到平衡的 MEA 溶液,我们称为富液。富液自塔底由富-液泵抽出,加压后依次经 II级贫-富液换热器,再生气冷凝器,I 级贫富液换热器,最终加热至98,经再生塔顶部液体分布装置喷淋入塔。ò在再生塔内溶液中HOCH2NH3H3CO3、HOCH2CH2NH42CO3、HOCH2CH2NHCOONH3CH2OH 等固定化合物在 98温度下,分解释放出
19、 CO2。 CO2 随同大量的水蒸汽及少量 MEA 蒸气由塔顶引出,温度约为 98,压力约为0.025MPa;进入再生气冷却器与富液进行热交换后,再生气冷凝器的气体温度降至约 75,大量水蒸气被冷凝,凝液与气体再一同进入二级冷却器冷却至 40,然后去 CO2 分离器。ò在 CO2 分离器内,气体夹带的凝液被分离,CO2 送后工序,凝液返回地下槽,再经回流泵重新送入系统。ò对气液分离后的 CO2,进行精脱硫后再作为合格产品 CO2 输出,如果用户对硫化物要求不高,可以不进行精脱硫。ò对吸收塔而言,温度低,一方面 MEA 液碱性强,有利于化学吸收反应,同时贫液中酸性气
20、体平衡分压低,有利于气体吸收,另一方面温度低降低了离开吸收段气体中 MEA 液分压,减轻了洗涤段负荷,操作中应注意贫液冷却器贫液温度,尽量控制在低于 45操作。ò对再生塔而言,温度高有利于酸性气体的解吸,降低溶液再生度,增大溶液负载 CO2 能力,但过高的温度会导致 MEA液的降解,同时加大了再生系统的腐蚀作用,在实际运行过程中,需要对两者进行兼顾,通常再生塔底部温度控制在 110,而与此对应塔顶温度为96。ò从再生塔下部排出的吸收液冷却后经贫液泵加压后与溶液换热,再经水冷降温至40过滤后输送到吸收塔,作为吸收塔的吸收液,反复循环使用。ò为了使装置能稳定长期运行,
21、防止 MEA 液对设备的腐蚀,本装置的所有设备全部采用不锈钢。ò由于 MEA 液对设备的腐蚀性较强,在通常 MEA 浓缩装置中需要补充大量的缓蚀剂,造成产品生产成本增高的主要原因。其中金属离子特别是 Fe+3会严重降低 MEA 液的活性,导致 MEA 液的补充量加大,往往在装置开车初期反应不是很明显,随时间的延长,MEA 液活性降低较严重,补充量也相应增大。ò在装置设计中,MEA 液的循环量操作的关键因素之一。在温度压力一定的情况下, MEA 液对 CO2的溶解度是一定的,循环量过小,吸收效率降低,出装置产品 CO2 收率会降低;而循环量过大,则能耗增加。在 MEA 液浓度
22、一定时,选择溶液循环标准为:富液中0.35 摩尔分子 CO2/摩尔分子 MEA而有效酸气负荷=富液再生度-贫液再生度如果溶液酸气负荷选择偏大,由于一个分子胺只与 0.5 分子 CO2 反应,而贫液中还残留一定量的 CO2,实际上溶液有效吸收 CO2 能力达不到,其结果是装置 CO2收率降低,此时我们需要加大溶液的循环量。4.3 工艺技术特点及先进性降耗。4.4 特别说明:1、如果将再生塔顶出来的再生气 CO2 压力从 510KPa 提高到为 50KPa,从技术上讲,只要将再生温度提高,是可行的,其最大优点是可以省去二氧化碳增压鼓风机,但再生温度则必须从 95-100提高到135以上,随着温度的
23、升高,不仅蒸汽能耗增加,而且其腐蚀性也会随之增加,考虑到生产的安全性和稳定性,建议不予采用。2、工厂现有烟道气引风机,出口直排大气,如果本项目所用原料气(占 1/5由该引风机分流提供,则必须对另外 4/5的气流进行限流增压,不仅将增加电耗,而且可能影响全系统的操作条件。因此,本方案推荐增加原料气鼓风机。第四部分方案二PSA 法石灰窑尾气提纯工业 CO2 气体装置技术方案及投资估算1.0 装置概况第一节 PSA 法技术方案文中所述压力除特别注明外,全部为表压1.1 目的:提供变压吸附法回收 CO2 装置1.2 原料气组成:(v %组分CO2 CO O2 H20 N2 N0X V% 21.2 0.
24、2 9.4 4.6 64.6 477mg/m3 1001.6 原料气压力:常压 MPa(表压,以下同。1.7 原料气温度:1241.8 原料气流量:42000 Nm3/h,询价方可提供流量:128911Nm3/h 。1.6 产品气组成要求CO2 纯度:80%(V产品 CO2 气中对氮氧化物含量不作要求。1.7 产品气输出流量:10000 Nm3/h (8000 Nm3/h 100%CO21.8 产品气输出压力0.02MPa1.9 吸附废气:吸附废气输出压力 0.12MPa,流量:30335.7 Nm3/h,可作为反吹气体,取消反吹风机。(反吹风机的主要参数为:型号 Y5-478C,全压 256
25、0Pa,风量 24000m3/h1.10 对原料气组分的分析:本公司在得到原料气条件后,与询价方进行了电话交流,预计今后尾气中的空气量会得到一定程度地控制,O2含量也会有所下降,但下降幅度目前尚无法确定,因此,本方案仍然按询价方提供的原料气条件制定。当今后原料气中 O2 含量下降时,有利于装置的运行。1.11 对产品气 CO2 只要求 60%含量的分析:由于原料气中含有高达 69%的 O2,而产品气中对 O2 的要求小于 0.6%,根据变压吸附的工作原理,对 CO2 产品气而言,如果将 O2 含量控制到了小于 0.6%,则 N2 含量必然会小于 16%,CO2 产品浓度自然就会达到80%以上;
26、反之,如果将要 CO2 产品气中的 N2 含量放宽到40%,则 O2 含量自然就会达到2%以上,产品指标不能达标。如果一定要达到在O2 含量小于 0.6%,CO2 含量为 60%,唯一的方法是装置生产出 80%以上的 CO2 产品气后,加入纯 N2 气,将 CO2 产品气浓度稀释到 60%。根据以上分析,本次方案暂时只作 80%浓度的方案。2.0 流程框图与物料平衡2.1 工艺流程框图2.2 物料衡算:CO2 回收率 90%。CO2 N2 CO O2 H2O原料气v% 21.2 64.6 0.2 9.4 4.6 100.0(湿基 Nm3/h 8904.0 27132.0 84.0 3948.0
27、 1932.0 42000.01原料气(干基v% 22.2 67.7 0.2 9.9 100.0Nm3/h 8904.0 27132.0 84.0 3948.0 40068.0v% 2.9 84.1 0.2 12.8 100.02 净化气3 产品 CO2 气Nm3/h 890.4 25504.1 71.4 3869.8 30335.7v% 82.34 16.73 0.13 0.80 100.0Nm3/h 8013.6 1627.9 12.6 78.2 9732.33.0 工艺简述本装置分为 4 个工段,包括水洗除尘工段,原料气压缩工段,TSA 预处理工段,PSA 提纯 CO2 工段。ò
28、;水洗除尘工段:原料气在气量 43000 Nm3/h,温度 1240C,氮氧化物 477mg/m3 及粉尘含量为 28.5 mg/m3 条件下,进入水洗工段,水洗工段的主要作用为:1降温:将原料气温度由 1240C 降低到 35400C,2除尘:将原料气中粉尘含量 28.5 mg/m3 脱除到 10.0 mg/m3 以下。3脱除氮氧化物:将原料气中氮氧化物 477mg/m3 脱除到 50300mg/m3。ò TSA 预处理工段水洗后的原料气由于仍然含有氮氧化物,具有很强的腐蚀性,在进入到压缩机前必须脱除,因此,水洗后的原料气进入到预处理工段,在脱除氮氧化物的同时,对原料气进行了较为深
29、度的干燥,确保后续原料气压缩机的安全运行。ò原料气压缩工段:经水洗及预处理净化后的原料气,进入到原料气压缩机工段,对原料气进行升压,从常压状态压缩到 0.16MPa,输送到下一工段提纯。ò PSA 提纯 CO2 工段:原料气 0.15MPa 压力下,进入到 PSA 提纯 CO2 工段,本工段是整个装置的核心。本工段由 8台吸附器和一系列程序控制阀门构成的变压吸附系统。在变压吸附系统中,任一时刻总是有 6 台吸附器处于吸附步骤的不同阶段,由吸附塔下部入口端通入原料,在出口端释放出大部分废气,有用的 CO2 气体在吸附剂上被吸附。每台吸附器在不同时间依次经历吸附(A、压力均衡降
30、(ED、抽真空(V、压力均衡升(ER等步骤。吸附器的压力均衡降用于其它吸附器的压力均衡升。最后通过抽真空得到产品输出界区。4.0 装置主要配置4.1 非标设备共 17 台非标设备,总重 282.1 吨 名 称 规 格 主要材 料 数量 水洗工段 TSA 工段 PSA 工段 产品 水分 离器 (台 填料 V=40m3 1 1Cr18Ni9Ti 2TSA 吸附器 DN3200 V=80m3 Q345R 洗气冷却塔 DN3400×14900 1Cr18Ni9Ti 1 洗气塔 DN22800 V=35m3 Q345R 1 8 均压罐 Q345R 1 换热器 F=250m2 气缓冲罐 PSA 吸附器 V=64m3 Q345R DN3600 V=260m3 合 计 17 4.2 吸附材料 吸附材料总重 485.2 吨 牌 号 合计 重量 (吨) 75.6 409.6 TSA 吸附塔 TSA-210 PSA 吸附塔 TSA-314 合计 485.2 4.3 定型设备 设备名称 型号 风机 )ARH-700CM 2 315 265 16 1 开 1 备 机 2D-350/1.5 3 出水 132, 共计数量 70 台 数量台 4 9 10 32 9 碳钢 碳钢 碳钢 碳钢 碳钢 950 8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论