一元二次方程概念及解法讲义_第1页
一元二次方程概念及解法讲义_第2页
一元二次方程概念及解法讲义_第3页
一元二次方程概念及解法讲义_第4页
一元二次方程概念及解法讲义_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、海豚教育个性化简案学生姓名: 年级: 科目: 授课日期: 月 日上课时间: 时 分 - 时 分 合计: 小时教学目标1. 理解并掌握一元二次方程的一般形式;2. 会用直接开平方法、配方法、公式法解一元二次方程;3. 能根据方程特征,灵活选择解方程的方法。重难点导航1. 一元二次方程的解法;2. 根据方程特征,灵活选择适当的方法解方程.教学简案:一元二次方程的概念及解法知识点一:一元二次方程的概念 知识点二:一元二次方程的解知识点三:解一元二次方程授课教师评价: 准时上课:无迟到和早退现象(今日学生课堂表 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共 项) 上课态度认真:

2、上课期间认真听讲,无任何不配合老师的情况(大写) 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象 审核人签字:学生签字:教师签字:备注:请交至行政前台处登记、存档保留,隔日无效 (可另附教案内页) 大写:壹 贰 叁 肆 签章:海豚教育错题汇编1. 已知关于x的一元二次方程的系数满足,则此方程必有一根为 。海豚教育个性化教案一元二次方程的概念及解法知识点一:一元二次方程的概念 (1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 (2)一般表达式:(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程要判断一个

3、方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为的形式,则这个方程就为一元二次方程 (4)将方程化为一般形式:时,应满足(a0)例1:下列方程x2+1=0;2y(3y-5)=6y2+4;ax2+bx+c=0 ;,其中是一元二次方程的有 。变式:方程: 中一元二次程的是 。例2:一元二次方程化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。变式1:一元二次方程3(x2)25x1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。变式2:有一个一元二次方程,未知数为y,二次项的系数为1,一次项的系数为3,常数项为6,请你写出它的一般形式_。

4、例3:在关于x的方程(m-5)xm-7+(m+3)x-3=0中:当m=_时,它是一元二次方程;当m=_时,它是一元一次方程。变式1:已知关于x的方程(m+1)x2mx+1=0,它是( )A一元二次方程 B一元一次方程C一元一次方程或一元二次方程 D以上答案都不对变式2:当m 时,关于x的方程是一元二次方程知识点二:一元二次方程的解(1) 概念:使方程两边相等的未知数的值,就是方程的解。(2) 应用:利用根的概念求代数式的值;【典型例题】1. 已知是一元二次方程的一个解,则的值是( )ABC0D0或2. 已知的值为2,则的值为 。3. 若x=a是方程x2-x-2015=0的根,则代数式2a2-2

5、a-2015值为 。4. 关于x的一元二次方程的一个根为0,则a的值为 。5. 已知关于的一元二次方程的系数满足,则此方程必有一根为 。【举一反三】1. 已知关于的方程的一个根为,则实数的值为( )A1BC2D2. 若m2-5m+2=0,则2m2-10m+2016= 。3. 若关于x的方程(a+3)x2-2x+a2-9=0有一个根为0,则a= 。4. 一元二次方程ax2+bx+c=0,若4a-2b+c=0,则它的一个根是 。5. 若x=1是关于x的一元二次方程一个根,求代数式2007(a+b+c)的值知识点三:解一元二次方程 一:直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫

6、做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是n的平方根,当时,当n0时,方程没有实数根。用直接开平方法解一元二次方程的理论根据是平方根的定义,达到降次转化之目的。(1) 形如的方程的解是x=。当p=0时,0(2) 形如的方程的解为x=。形如的方程可先化成的形式,再用直接开平方法解。【例题讲解】1、方程(x-2)2=9的解是()Ax1=5,x2=-1 Bx1=-5,x2=1 Cx1=11,x2=-7 Dx1=-11,x2=72、若方程x2=m的解是有理数,则实数m不能取下列四个数中的()A1 B4 C D3、对于形如的一元二次方程,能直接开平方的条件是_。4、

7、方程的根是_。5、用直接开平方法解下列方程:(1) (2) ( 3) (4)【同步训练】1、用直接开平方法解方程(x-3)2=8,得方程的根为()Ax=3+2 Bx1=3+2,x2=3-2Cx=3-2 Dx1=3+2,x2=3-22、方程(x-3)2=0的根是()Ax=3 Bx=0 Cx1=x2=3 Dx1=3,x2=-33、方程的根是_。4、方程的根是_。5、用直接开平方法解下列方程:(1) (2)(3) (4)二:配方法配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。配方法的步骤:(1)把常数项移到方程的右边 (2)把二次项系数化为1(3)等式的两边同时加上一次

8、项系数一半的平方(4)配成完全平方式(5运用开平方法求解。 (1) (2) (3) (4)【例题讲解】1、用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A(x-1)2=4 B(x+1)2=4 C(x-1)2=16 D(x+1)2=162、若一元二次方程式x2-2x-3599=0的两根为a、b,且ab,则2a-b之值为何?()A-57 B63 C179 D1813、用适当的数填空:、x2+6x+ =(x+ )2 、x25x+ =(x )2;、x2+ x+ =(x+ )2 、x29x+ =(x )24、将二次三项式2x2-3x-5进行配方,其结果为_5、已知4x2-ax+

9、1可变为(2x-b)2的形式,则ab=_6、将x2-2x-4=0用配方法化成(x+a)2=b的形式为_ _,所以方程的根为_7、若x2+6x+m2是一个完全平方式,则m的值是 8、用配方法解下列方程:(1) (2) (3) (4) (5) (6)9、用配方法求解下列问题(1)求2x2-7x+2的最小值 ; (2)求-3x2+5x+1的最大值。【举一反三】1把方程x+3=4x配方,得( )A(x-2)2=7 B(x+2)2=21 C(x-2)2=1 D(x+2)2=22用配方法解方程x2+4x=10的根为( )A2 B-2 C-2+ D2-3. 用配方法解下列一元二次方程(1) (2) (3)

10、(4) 三:公式法(1)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。由配方法得 ,化简: 一元二次方程的求根公式:,公式法的步骤:就把一元二次方程的各系数分别代入,这里a为一次项系数,b为二次项系数,c为常数项。【典型例题】例1:一般地,对于一元二次方程ax2+bx+c=0(a0),当b2-4ac0时,它的根是_,当b-4ac0时,方程_例2:用公式法解方程x2=-8x-15,其中b2-4ac=_,x1=_,x2=_例3:一元二次方程x2-2x-m=0可以用公式法解,则m=( )A0 B1 C-1 D1例4:不解方程,判断所给方程:x2+3x+7=0;x2+4=0

11、;x2+x-1=0中,有实数根的方程有( )A0个 B1个 C2个 D3个例5:方程(x+1)(x-3)=5的解是()Ax1=1,x2=-3 Bx1=4,x2=-2 Cx1=-1,x2=3 Dx1=-4,x2=2例6:一元二次方程的根是()A. B. C. D. 例7:一元二次方程x2-3x-1=0的解是 。例8:用公式法解下列方(1); (2); (3);例9:若x2-xy-3y2=0(y0),求的值【举一反三】1. 用公式法解方程x2=-8x-15,其中b2-4ac=_,x1=_,x2=_2. 用公式法解方程4y2=12y+3,得到( ) Ay= By= Cy= Dy=3. 不解方程,判断

12、所给方程:x2+3x+7=0;x2+4=0;x2+x-1=0中,有实数根的方程有( )A0个 B1个 C2个 D3个4. 用公式法解方程 (1)x2+15x=-3x; (2)x2+x-6=0;(3)3x2-6x-2=0; (4)4x2-6x=0四:因式分解法(1)x212x0; (2)4x210; (3); (4)x24x210;(5)(x1)(x3)12;(6)3x22x10; (7)10x2x30; (8)(x1)24(x1)210用适当方法解下列方程:(1)x24x30; (2)(x2)2256;(3)x23x10; (4)x22x30;(5) (2t3)23(2t3); (6)(3y)

13、2y29; (7)72x2=15 (8) (9)x2(51)x0; (10)2x28x7; (11)(x5)22(x5)80海豚教育个性化教案(真题演练)1. (2014甘孜州)一元二次方程x2+px-2=0的一个根为2,则p的值为()A. 1 B. 2 C. -1 D. -2海豚教育1对1出门考(_年_月_日 周_)学生姓名_ 学校_ 年级_ 等第_1、下列方程中,常数项为零的是 ( )A、x2+x=1 B、2x2-x-12=12 C、2(x2-1)=3(x-1) D、2(x2+1)=x+22、已知是方程2-x-1的一个根,则代数2的值等于 ( )A、B、C、0D、23、下列方程:x2=0, -2=0,2+3x=(1+2x)(2+x),3-=0,-8x+ 1=0中,一元二次方程的个数是 ( )A、1个 B、2个 C、3个 D、4个4、方程x(x+1)=3(x+1)的解的情况是 ( )A、x=-1 B、x=3 C、 D、以上答案都不对5、把方程4 x2 = 3x化为ax2 + bx + c = 0(a0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。6、在关于x的方程(m-5)xm-7+(m+3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论