版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 C.M. Carvalho, H.F. Lopes / Computational Statistics & Data Analysis 51 (2007 4526 4542 Table 3 Posterior summary for Model SV MSSV 95% credible interval (0.9325;0.9873 (0.8481;0.8903 4541 E |DT 0.9525 0.8707 6 5 4 3 2 1/2/97 7/2/97 12/2/97 6/1/98 10/9/98 1/13/00 1/15/01 Fig. 15. Ibovespa: Baye
2、s factorMSSV vs. SV. 5. Final remarks In this article we developed and implemented a simulation-based sequential algorithm to estimate a univariate Markov switching stochastic volatility (MSSV model as described in So et al. (1998. The use of simulated examples was intended to show the performance o
3、f the proposed method while the Ibovespa example shows its applicability to real market problems. The simulated examples were able to show the ability of the sequential algorithm to perform accurate sequential inferences. The more distinct the volatility regimes are the better is the performance of
4、the sequential lter presented. The presentation of Dataset 4 with highly unstable volatility regimes aimed to touch on the limitation of the methodthis is a situation where not a lot of information is carried from one time point to the next and therefore, a sequential estimation procedure does not p
5、erform very well. One should be aware of this problem despite of the fact that this example is not representative of the applications that the MSSV model and the particle lter presented here hope to address. It is important to highlight that we were also able to show, by comparing predictive power,
6、that in all simulated examples the MSSV outperforms a simple stochastic volatility (SV model (k = 1. In the Ibovespa example we were able to successfully separate moments of high risk from moments that presented a calm trade pattern. We were also able to link the volatility regimes to well dened emerging market crisis. By including structural changes the model no longer overestimates the volatility persistence and the idea of non-stationarity is eliminated. In this context the MSSV (k = 2 outperformed a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古自治区阿拉善盟2025-2026学年高二上化学期末综合测试试题含解析
- 内蒙古乌兰察布市集宁区集宁一中2025年高二上化学期末检测模拟试题含解析
- 2025年广西防城港市化学高二上期末预测试题含解析
- 湖南城市学院《小学数学教学技能训练》2024-2025学年第一学期期末试卷
- 吉林省白山市抚松县六中2026届高二数学第一学期期末考试试题含解析
- 病窦综合征诊疗精要
- 牙周病诊疗流程规范
- 全麻醉监测护理规范
- 气管癌放疗后护理措施
- 放射科CT扫描前准备注意事项
- 2025至2030中国体育和体育场咨询服务行业项目调研及市场前景预测评估报告
- 建筑行业施工安全管理制度汇编
- 公路养护维修作业指导方案
- 护理三基基础知识培训课件
- 2025-2026学年北师大版数学小学三年级上册(全册)教案设计及教学计划
- 医院患者陪检服务全流程管理规范
- 2025年云南磨憨开发投资集团有限公司招聘考试笔试试题(含答案)
- 颅内动脉急诊取栓技术
- 小儿泌尿道感染教学查房
- 2025 儿科过敏性紫癜护理查房课件
- 小学票据管理办法
评论
0/150
提交评论