




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微分中值定理及应用综述谢娟 09211045江苏师范大学 数学与统计学院 徐州 221116摘 要:微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理、泰勒定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁和基石.本文对微分中值定理中的一些条件给予了相关说明,介绍了微分三大中值定理以及它们之间的关系,后又在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明.关键词:微分中
2、值定理;关系;应用引言微分中值定理是微分学的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,应用十分广泛.1 浅谈微分中值定理1.1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的定理, 它们分别是罗尔定理、拉格朗日定理和柯西中值定理.具体内容如下:1.1.1 罗尔定理如果函数 满足:( 1) 在闭区间上连续;( 2) 在开区间内可导;( 3) 在区间端点的函数值相等, 即, 那么在区间 内至少有一点 , 使函数在该点的导数等于零, 即几何分析在(图1) 中可见曲线在上是一条连续光滑的曲线, 曲线在 内处处有切线且没有垂直于 轴的切线
3、.在曲线的两端点一般高(罗尔定理的三条件在平面几何中成立), 因而在内曲线至少有一点处的切线平行于 轴(罗尔定理的结论成立,).通过对罗尔定理的几何分析, 抽象的罗尔定理得到了具体化(这也反应了数学的一般思想, 抽象思维具体化)。对于我们理解和掌握罗尔定理大有帮助.(图1) 拉格朗日定理如果函数 满足:( 1) 在闭区间上连续;( 2) 在开区间内可导, 那么在区间内至少有一点 , 使等式成立.几何意义从(图2)可知, 曲线在上是连续光滑的曲线(即拉格朗日定理的条件在几何上的反映), 那么曲线弧在上至少有一点的切线平行于弦AB (弦AB 的斜率为 ,在处的切线平行于AB, 则 (图2)1.1.
4、3 柯西中值定理如果函数及满足:( 1) 在闭区间上连续;( 2) 在开区间内可导;( 3) 对任意,那么在区间内至少有一点 , 使等式成立.2 三个定理之间的关系在拉格朗日定理中, 如果, 则变成罗尔定理; 在柯西中值定理中, 如果 , 则变成拉格朗日定理.因此, 拉格朗日定理是罗尔定理的推广, 柯西中值定理是拉格朗日定理的推广.反之, 拉格朗日定理是柯西中值定理的特例, 罗尔定理是拉格朗日定理的特例。3 微分中值定理的应用 微分中值定理主要是利用函数导数在区间上所具有的特征去研究函数本身在该区间上的性质, 在研究函数的性质上是一个非常有利且方便的工具.中值定理的应用主要是以中值定理为基础,
5、应用导数判断函数单调性、取极值、拐点等项的重要性质.从而把握函数图象的各种几何特征.3.1 讨论方程零点(根)的存在性问题例、 设在上连续,在内可导,试证在内,方程至少存在一个根.证明:令,显然,在上连续,在内可导,而且 根据罗尔定理,至少存在一个 ,使.故在内,方程至少存在一个根.由10中的例1,我们可以知道,在我们要讨论的方程中,除了二次方程根的问题容易讨论之外,如果遇到复杂的方程,往往无从下手时,对于存在性的问题,我们可以分析题设条件,结合已学过的定理进行分析并解决.微分中值定理的条件很宽松,给一个定义在闭区间上的函数,只需函数在这个区间连续、可导(并不要求区间端点可导),再加一些看似苛
6、刻但实不苛刻的条件,用罗尔定理,就可以解决一些复杂的代数方程的判根问题,其步骤相当简单,一般是:命题条件构造辅助函数验证验证满足罗尔定理的条件命题结论3.2 求解不定式的极限柯西中值定理的一个及其重要的应用就是可以用来计算未定型的极限.(洛必达法则若函数和满足:(i), ;(ii)在点的某空心领域内两者都可导,且;(iii)(A可为实数,也可以为或),则 证 补充定义 ,使得 与 在点处连续。任取,在区间(或)上应用柯西中值定理,有 即 (介于与之间)当令时,也有,故得 注:若将其中换成,只要相应地修正条件(ii)中的条件,也可得到同样的结论.我们在仔细观察柯西中值定理里的表达式的形式,可以看
7、到两个函数式的比值,在一定条件下可以化成这两个函数的导数的比值,这样就可能使得作为未定型的分式的分子和分母所表示的函数,通过求导,而得到非未定型.由这个思路,我们即得到了洛必达法则. 例求解 容易检验与在点的条件下满足洛必达法则的条件,又因 所以 例. 求 解 由洛必达法则有 由17中的例2和17中的例3,我们可以看出,利用微分中值定理不但可以在理论分析和证明中有着十分重要的作用,而且它也为求某些较难的极限提供了一种简单而有效的方法,其方法就是对极限题中的某些部分使用拉格朗日定理,然后求出其极限,4,6,10中均提到了微分中值定理在这方面的应用.3.3 利用微分中值定理的证明例、 设定义于,存
8、在且单调下降,试证明对于,恒有。分析:,证明:由已知条件可知在区间和 上均满足拉格朗日定理,于是使得:,即。,使得:,即。由于,所以由已知存在且单调下降,可得:,从而有 例、求证:当时,。证明 设辅助函数,在区间上对使用拉格朗日中值定理,则 , 即 由于,则有 因此 整理可得 不等式的证明是高等数学的难点和重点,15中提到常用的方法是利用导数判断函数的单调性进而证明不等式,由例题5,我们可以总结下利用微分中值定理证明不等式的方法.首先给出使用微分中值定理证明不等式的步骤:(1) 构造辅助函数;(2) 构造微分中值定理需要的区间;(3) 利用,对进行适当的放缩。4 结束语 由上综述,我们对微分中
9、值定理的理解和内在联系,在解题的时候会利用微分中值定理和几何意义思考解题,讨论方程零点(根)的存在性,求极限和证明不等式等方面的应用.微分中值定理的应用,除了本文介绍的几个方面,还有8,12,15中提到的其他最值、凹凸性等多方面的结论,所以深入研究微分中值定理,有助于加深对这些定理的理解,清楚这些定理的证明,能促使我们掌握微分中值定理的具体应用.参考文献1 党艳霞,浅谈微分中值定理及其应用. 廊坊师范学院学报.(自然科学报)2010(10):10-1.2 纪华霞, 微分中值定理的几个推广结论. 高等函授学报( 自然科学版)2006(06): 19-6.3 郭军, 微分中值定理之探讨. 兵团职工
10、大学学报1999(06):24 孙学敏,微分中值定理的应用J.数学科学研究,2009,28(10):61-63 5 华东师范大学数学系.数学分析M.北京:高等教育出版社.1991,3:113.6 谭璐芸, 微分中值定理的应用. 辽宁师专学报.2007(03):9-1 7 庞永锋,赵验晖, 利用微分中值定理证明不等式. 高等数学研究.2009(09)8 周焕芹.浅谈中值定理在解题中的应用J.高等数学研究。1999.2(3):29-329 无良森.数学分析学习指导(上)M.北京:高等教育出版社,200410 王宝艳.微分中值定理的应用J.雁北师范学院学报,2004.21(20)59-6111 李成
11、章,黄玉民.数学分析(上)M北京:科学出版社,200413 项明寅,方辉平,微分中值定理的不等式形式及其应用.新乡学院学报)自然科学版).14 王秀玲,微分中值定理的另类证明与应用.安庆师范学院学报(自然科学版).2010.1115 邢建平,徐湘云.微分中值定理的解题应用J.中小企业管理与科技(上旬刊).2010(08)15816 刘章辉.微分中值定理及应用J.山西大同大学学报,2007,23(2):79-81.17 孙本旺.数学分析中的典型例题和解题方法M长沙:湖南科技出版Differential Mean Theorem and Its ApplicationXie Juan 092110
12、45Department of Mathematics, Jiang su Normal University, Xuzhou, 221116Abstract: The differential mean value theorem is a general term for a series of mean value theorem, a powerful tool to study the function, Which including the Fermat's theorem, Rolles theorem, Lagrange theorem, Cauchy theorem
13、, Taylor theorem, and L'Hospital rule. A group consisting of Rolle mean value theorem, Lagrange theorem of mean value theorem and Cauchy mean value theorem is the basic principle of the differential calculus, which is not only communicate the relationship between the function and its derivatives
14、, but also build the bridge and foundation of application of differential theory. Firstly, this paper gives a description of some conditions in differential mean value theorem and introduces three differential mean value theorem and its relations. Secondly, on the basis of this, they author summering the differential mean
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- NB/T 11531-2024煤矿水中总磷、氨氮、高锰酸盐指数含量的测定流动注射-分光光度法
- 调动双方协议书范本
- 试用期劳动合同协议
- 货车挂靠个人合同协议
- 2025年大学物理考试材料科学中的物理原理探讨试题及答案
- 2025年大学物理革新思路研究试题及答案
- 2021年全国高中数学联赛A卷
- 2019年全国高中数学联赛试题(A卷)
- 止水螺杆回收合同协议
- 楼道空位出售协议书范本
- 干部履历表(99年标准版)
- 社会网络分析在卫生领域的应用
- k线图经典图解
- 玻璃马蹄焰池窑课程设计说明书
- GB/T 223.14-2000钢铁及合金化学分析方法钽试剂萃取光度法测定钒含量
- 水池(水箱)清洗记录
- 理综答题“秘诀”课件
- 2022年河北省高中学业水平合格性考试语文试卷真题(答案详解)
- 建设工程项目管理4建设工程项目质量控制
- 《互联网金融基础》第四章互联网基金
- 不间断电源装置(UPS)试验及运行质量检查表
评论
0/150
提交评论