




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计量经济学期末课程设计09级管理学院院题目:影响我国财政收入因素的统计分析学生姓名学号专 业班级2012年5 月 21 日目 录一、引言3二、最新研究文献3三、财政收入影响因素的定量分析32.1变量选择32.2数据说明3四、模型建立43.1模型说明43.2模型数据说明43.3模型建立53.4回归模型5五、模型检验64.1经济检验64.2.统计检验61)拟合优度检验62)t检验6六、多重共线性检验及其修正65.1多重共线性检验65.2多重共线性的修正7七、异方差检验及其修正86.1异方差检验8绘制e2对X2、X3、X4的散点图86.1.2 Goldfeld-Quanadt检验9检验106.2异方
2、差的修正10八、自相关的检验及其修正137.1自相关的检验137.2自相关修正14九、结论与对策15影响我国财政收入因素的统计分析摘要:影响一国财政收入的因素有很多,比如税收收入、三大产业的产值、固定资产投资、从业人员数量等等。本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归以及多重共线性分析,建立了财政收入影响因素的模型,分析了影响财政收入主要因素及其影响程度,并提出了相关政策建议。关键字:财政收入 财政收入影响因素一、引言财政作为一个政府的活动,是政府职能的具体体现,主要有资源配置、收入再分配和宏观经济调控三大职能。财政收入是政府部门的公共收
3、入,是国民收入分配中用于保证政府行使其公共职能、实施公共政策以及提供公共服务的资金需求。财政收入的增长情况关系着一个国家经济的发展和社会的进步。因此,研究财政收入的增长就显得尤为必要。财政收入的主要来源是各项税收收入,此外还有政府其他收入和基金收入等。同时,一个国家财政收入的规模还要受到经济规模等诸多因素的影响。因此我们以财政收入为因变量,国内生产总值、年末从业人员数、全社会固定资产投资总额、国家财政决算中的各项税收 4个经济指标为自变量,利用软件进行回归分析,建立财政收入影响因素模型,分析影响我国财政收入的主要因素为如何,合理有效的制定我国的财政收入计划提供一些政策建议。二、最近研究成果:北
4、京市财政科研所完成了局级重点课题北京市征地超转人员的社会保障问题研究,为市政府科学决策提供了重要的研究支撑;天津市财政科研所牵头完成的天津市政府投融资平台风险防范研究课题,获得了市政府多位主要领导的批示河北省财政科研所、江苏省财政科研所等单位主动参与财政部业务司局的研究工作,完成预算司、外经办等单位委托的中国地区间基本公共服务均等化问题研究、中美地方层级经济合作前景研究等成果多项;安徽省财政科研所、宁波市财税研究室等单位结合实际形成了财政促进会展经济发展的研究与思考、促进宁波居民收入分配结构调整的财税政策研究等研究成果多项,直接服务于政府决策三、财政收入影响因素的定量分析3.1变量选择研究财政
5、收入的影响因素离不开一些基本的经济变量。大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量,比如从业人员数、固定资产投资等。影响财政收入的因素众多复杂,本文从国内生产总值、税收收入、从业人员数、固定资产投资四方面进行分析。3.2数据说明(1)、财政收入:是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而抽泣的一切资金的总和。财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕
6、状况。财政就是为了满足社会公共需要,弥补市场失灵,以国家为主体参与的社会产品分配活动。它既是政府的集中性分配活动,又是国家进行宏观调控的重要工具。(2)、国内生产总值:是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。它不但可反映一个国家的经济表现,更可以反映一国的国力与财富。(3)、固定资产投资:是建造和购置固定资产的经济活动,即固定资产再生产活动。固定资产再生产过程包括固定资产更新(局部和全部更新)、改建、扩建、新建等活动。(4)从业人员数:人口中参加经济活动的人口数。不包括从事家务劳动人口、就学人口、长期患
7、病不能工作人口、年老或退休人口等。(5)税收收入:税收收入是指国家按照预定标准,向经济组织和居民无偿地征收实物或货币所取得的一种财政收入。是国家预算资金的重要来源。在我国的税收收入结构中,流转税和所得税居于主体地位。具体有以下来源:增值税、消费税、营业税、企业所得税、个人所得税、外国投资企业和外国企业所得税、城市维护建设税、车船使用税、房产税、资源税、筵席税、印花税等四、模型建立4.1模型说明财政收入一般由以下几部分构成: 税收收入、国有企业上缴的利润收入、债务收入以及费用等其他收入,其中税收收入是财政收入的主要来源。同时,财政收入还受到经济规模、从业人员数、固定资产投资等诸多因素的影响,这里
8、可以用国内生产总值的变化来说明除税收以外的其他因素的变动对财政收入的影响。4.2模型数据说明本研究报告的数据来源于“中经网统计数据库”采集数据的区间为1980年2010年附19802010全国财政决算收入及相关数据表:年份国家财政决算收入中各项税收(亿元)国家财政决算收入(亿元)年末从业人员数(万人)全社会固定资产投资总额(亿元)国内生产总值(现价)(亿元)1980571.71159.9342361910.94545.61981629.891175.8437259614891.61982700.021212.3452951230.45323.41983775.591367464361430.1
9、5962.71984947.351642.9481971832.97208.119852040.792004.82498732543.2901619862090.732122512823120.610275.219872140.362199.4527833791.712058.619882390.472357.2543344753.815042.819892727.42664.9553294410.416992.319902821.862937.164749451718667.819912990.173149.48654915594.521781.519923296.913483.376615
10、28080.126923.519934255.34348.956680813072.335333.919945126.885218.16745517042.148197.919956038.046242.26806520019.360793.719966909.827407.996895022913.571176.619978234.048651.146982024941.17897319989262.89875.957063728406.284402.3199910682.5811444.087139429854.789677.1200012581.5113395.237208532917.
11、799214.6200115301.3816386.047279737213.5109655.2200217636.4518903.647328043499.9120332.7200320017.3121715.257373655566.6135822.8200424165.6826396.477426470477.4159878.3200528778.5431649.297464788773.6184937.4200634804.3538760.274978109998.2216314.4200745621.9751321.7875321137323.9265810.3200854223.7
12、961330.3575564172828.4314045.4200959521.5968518.375828224598.8340902.8201073210.7983101.5176105278121.94012024.3模型建立以国家财政决算收入为被解释变量,国内生产总值(现价)、国家财政决算收入中各项税收、年末从业人员数、全社会固定资产投资总额作为解释变量建立线性回归模型:Yt=0+1X1t+2X2t +3X3t+4X4t+ui其中,Yt 国家财政决算收入 X1t 表示国内生产总值(现价) X2t国家财政决算收入中各项税收 X3t表示年末从业人员数X4t 表示全社会固定资产投资总额 0、
13、1、2、3、4、5表示待定系数 ui 表示随机误差项4.4回归模型利用eviews软件,用OLS法回归可得如下结果OLS回归结果Dependent Variable: YMethod: Least SquaresDate: 05/20/12 Time: 11:41Sample: 1980 2010Included observations: 31VariableCoefficientStd. Errort-StatisticProb. C2231.738552.67504.0380660.0004X10.0009570.0072740.1315540.8963X21.06
14、49630.04775122.302640.0000X3-0.0418680.010683-3.9190100.0006X40.0226940.0065263.4774430.0018R-squared0.999857 Mean dependent var16520.73Adjusted R-squared0.999835 S.D. dependent var22001.07S.E. of regression282.4520 Akaike info cri
15、terion14.27158Sum squared resid2074258. Schwarz criterion14.50287Log likelihood-216.2096 Hannan-Quinn criter.14.34698F-statistic45498.54 Durbin-Watson stat1.463028Prob(F-statistic)0.000000=2231.738+0.000957X1+1.064963X2-0.041868X3+
16、0.022694X4t=(4.038066)(0.131554)(22.30264)(-3.919010)(3.477443)R2=0.999857 =0.999835 F=45498.54 DW=1.463028五、模型检验5.1经济检验模型估计结果说明,在假定其他变量不变的情况下,国家财政决算收入中各项税收每增长1%,平均来说国家财政决算收入中各项税收会增长0.096%;在假定其他变量不变的情况下,年末从业人员数增长1%,平均来说国家财政决算收入会增长106.5%;在假定其他变量不变的情况下,全社会固定资产投资总额增长1%,平均来说国家财政决算收入会降低4.19%;在假定其他变量不变的情况
17、下,国内生产总值(现价)增长1%,平均来说国家财政决算收入会增长2.27%。这与理论分析与经验判断相一致。5.2.统计检验1)拟合优度检验由4.4中数据可以得到R2=0.999857,修正的可决系数=0.999835,这说明模型对样本的拟合很好。2)变量的显著性检验( t检验)分别针对H0:j=0(j=1,2,3,4,5),给定显著性水平=0.05,查t分布表得自由度为n-k=26的临界值t/2(n-k)=2.056。由3.4中数据可得对应t统计量分别为4.038066,0.131554,22.30264,-3.919010,3.477443,其中的t统计量绝对值大于2.056,都应当拒绝原假
18、设,的t统计量绝对值小于2.056,应该拒绝备择假设,也就是说国家财政决算收入,全社会固定资产投资总额,国内生产总值(现价)分别对被解释变量国家财政决算收入都有显著的影响,而年末从业人员数对被解释变量国家财政决算收入没有显著的影响。3)方程的显著性检验( F检验)针对H0:j=0(j=2,3,4,5),给定显著性水平=0.05,在F分布表中查出自由度k-1=4和n-k=26的临界值F(4,26)=2.74.由3.4中得到F=45498.54,由于F=45498.54> F(4,26)=2.74,应拒绝原假设H0:j=0(j=2,3,4,5),说明回归方程显著,即国家财政决算收入,年末从业
19、人员数,全社会固定资产投资总额,国内生产总值(现价)等变量联合起来对国家财政决算收入有显著影响。六、多重共线性检验及其修正6.1多重共线性检验从回归结果的系数以及t值我们可以看出模型可能存在多重共线性,下面我们计算出解释变量的相关系数。解释变量的相关系数矩阵如下: 变量X1X2X3X4X1 1.000000 0.993302 0.721214 0.979053X2 0.993302 1.000000 0.653618 0.991928X3 0.721214 0.653618 1.000
20、000 0.607997X4 0.979053 0.991928 0.607997 1.000000由各相关系数值可知, 解释变量之间都高度相关,模型存在严重的多重共线性。6.2多重共线性的修正采用逐步回归法,来检验并解决多重共线性问题。分别作y对x1、x2、x3、x4的一元回归一元回归估计结果变量X1X2X3X4参数估计值0.1994561.350621.2392980.314516t统计量40.02286220.13084.46788347.46135R20.9822180.9994020.4077040.9872900.9816040.9
21、993810.3872800.986851可见加入X2的修正可决系数最大,应该以X2为基础,顺次加入其他变量逐步回归。加入新变量的回归结果(一)变量X1X2X3X4X2,X1-0.029179(-4.975477)1.298576(39.24898)0.999660X2,X31.154375(280.8435)-0.050510(-7.188511)0.999775X2,X40.995435(31.40165)0.039243(4.440459)0.999624比较可得,当加入X3时方程的改进最大,而且个参数的t检验显著,因此选择保留X3,再继续加入其他新变量逐步回归。加入新变量的回归结果(二
22、)X1X2X3X4X2,x3,x1-0.002932(-0.343420)1.169445(26.52868)-0.046957(-3.735682)0.999767X2,x3,x41.070374(44.93790)-0.040765(-6.268515)0.022562(3.564277)0.999841在加入X2、X3的基础上加入X4后方程的有所改善,且各个参数的t检验均显著,所以应当保留X4。加入新变量的回归结果(三)X1X2X3X4X2,x3,x4,x10.000957(0.131554)1.064963(22.30264)-0.041868(-3.919010)0.022694(3
23、.477443)0.999835当加入X1时,没有提高,其参数的t检验不显著。因此去除X1最后修正严重多重共线性影响后的回归结果为:=2178.690+1.070374X2-0.040765X3+0.022562X4t=(5.872354)(44.93790)(-6.268515)(3.564277)R2=0.999857 =0.999841 F=62956.07 DW=1.470169七、异方差检验及其修正7.1异方差检验7.1.1绘制e2对X2、X3、X4的散点图从图上看,散点集中于左下角,模型可能存在异方差。下面我们运用其他方法进一步检验模型的异方差是否存在。7.1.2 Goldfeld
24、-Quanadt检验由于n=31 删除四分之一的观测值,也就是大约7个观测值,余下部分平分得到两个样本区间:19801991和19992010,它们的样本个数均为12个,即n1=n2=12。采用OLS进行估计。Dependent Variable: YMethod: Least SquaresDate: 05/20/12 Time: 13:53Sample: 1980 1991Included observations: 12VariableCoefficientStd. Errort-StatisticProb. C-787.7499299.0150-2.6344830
25、.0300X20.3704790.0897514.1278680.0033X30.0391310.0075505.1831800.0008X40.0420180.0544560.7715890.4625R-squared0.992545 Mean dependent var1999.403Adjusted R-squared0.989749 S.D. dependent var697.8872S.E. of regression70.65790 Akaike
26、 info criterion11.61478Sum squared resid39940.31 Schwarz criterion11.77641Log likelihood-65.68867 Hannan-Quinn criter.11.55494F-statistic355.0346 Durbin-Watson stat2.502786Prob(F-statistic)0.000000Dependent Variable: YMethod: Least
27、 SquaresDate: 05/20/112 Time: 13:55Sample: 1999 2010Included observations: 12VariableCoefficientStd. Errort-StatisticProb. C9743.16214283.100.6821460.5144X21.1196090.05725819.553730.0000X3-0.1504430.200618-0.7498970.4748X40.0124280.0123681.0048180.3444R-squared0.999834
28、160;Mean dependent var36910.18Adjusted R-squared0.999771 S.D. dependent var23848.43S.E. of regression360.5755 Akaike info criterion14.87448Sum squared resid1040118. Schwarz criterion15.03612Log likelihood-85.24689
29、 Hannan-Quinn criter.14.81464F-statistic16037.13 Durbin-Watson stat2.290085Prob(F-statistic)0.000000有结果计算F统计量:F=26.04181判断在=0.05下,分子分母的自由度都是(31-7)/2-4=8,查F分布表得到临界值F0.05(8,8)=3.44,因为F=26.04181> F0.05(8,8)=3.44,所以拒绝原假设,表明模型存在异方差。7.1.3White检验使用EViews得到以下结果:Heteroskedastic
30、ity Test: WhiteF-statistic28.71478 Prob. F(9,21)0.0000Obs*R-squared28.67028 Prob. Chi-Square(9)0.0007Scaled explained SS22.91936 Prob. Chi-Square(9)0.0064Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 05/20/12 T
31、ime: 16:49Sample: 1980 2010Included observations: 31VariableCoefficientStd. Errort-StatisticProb. C-1108436.685409.8-1.6171870.1208X2290.0531148.91161.9478210.0649X220.0054150.0022852.3699230.0274X2*X3-0.0046240.002233-2.0707820.0509X2*X4-0.0030380.001238-2.4534210.0230X340.1161126.505721
32、.5134890.1451X32-0.0003200.000245-1.3048300.2061X3*X40.0025800.0007543.4230150.0026X4-174.587551.71831-3.3757380.0029X420.0004090.0001662.4563110.0228R-squared0.924848 Mean dependent var66956.09Adjusted R-squared0.892640 S.D. dependent var98811.72S.E. of
33、 regression32376.52 Akaike info criterion23.86395Sum squared resid2.20E+10 Schwarz criterion24.32653Log likelihood-359.8912 Hannan-Quinn criter.24.01474F-statistic28.71478 Durbin-Watson stat1.700188Prob(F-sta
34、tistic)0.000000从表可看出nR2 =28.67028,而在5%的显著性水平下,查表得临界值2(9)=16.919。因为nR2 =28.67028>2(9)=16.919,所以,表明模型存在异方差。 从上述几种方法检验结果可以看出模型存在异方差性,那么我们将对其进行修正。7.2异方差的修正运用加权最小二乘法估计过程中,我们分别使用权w1=1/x2,w2=1/x22,w3=1/sqr(x2),。经比较发现用权数w3的效果比较好,下面给出权数w1、w2、w3的回归结果Dependent Variable: YMethod: Least SquaresDate: 05/20/12
35、Time: 14:27Sample: 1980 2010Included observations: 31Weighting series: W1VariableCoefficientStd. Errort-StatisticProb. C1615.115315.38265.1211300.0000X20.6934360.1026986.7521670.0000X3-0.0223090.007573-2.9456940.0066X40.1240560.0305134.0656740.0004Weighted StatisticsR-squared0.990514
36、; Mean dependent var3109.770Adjusted R-squared0.989460 S.D. dependent var766.5424S.E. of regression215.2590 Akaike info criterion13.70148Sum squared resid1251084. Schwarz criterion13.88651Log likelihood-208.3729
37、60; Hannan-Quinn criter.13.76179F-statistic939.7561 Durbin-Watson stat1.141270Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.998226 Mean dependent var16520.73Adjusted R-squared0.998029 S.D. dependent var2
38、2001.07S.E. of regression976.8039 Sum squared resid25761939Durbin-Watson stat0.595311Dependent Variable: YMethod: Least SquaresDate: 05/20/12 Time: 14:28Sample: 1980 2010Included observations: 31Weighting series: W2VariableCoefficientStd. Errort-StatisticProb. C269.
39、4737327.91550.8217780.4184X20.3148060.1353052.3266430.0277X30.0122590.0083581.4666910.1540X40.1904840.0599923.1751580.0037Weighted StatisticsR-squared0.935786 Mean dependent var1503.341Adjusted R-squared0.928651 S.D. dependent var2477.187S.E. of regressi
40、on113.5166 Akaike info criterion12.42169Sum squared resid347922.4 Schwarz criterion12.60672Log likelihood-188.5362 Hannan-Quinn criter.12.48200F-statistic131.1561 Durbin-Watson stat1.696653Prob(F-statistic)0.
41、000000Unweighted StatisticsR-squared0.973838 Mean dependent var16520.73Adjusted R-squared0.970931 S.D. dependent var22001.07S.E. of regression3751.096 Sum squared resid3.80E+08Durbin-Watson stat0.106940Dependent Variable: YMethod:
42、Least SquaresDate:05/20/12 Time: 14:29Sample: 1980 2010Included observations: 31Weighting series: W3VariableCoefficientStd. Errort-StatisticProb. C2179.146265.39878.2108390.0000X20.9881290.05366918.411530.0000X3-0.0382880.005657-6.7687660.0000X40.0452640.0153362.9513900.0065Weighted Stati
43、sticsR-squared0.999006 Mean dependent var6966.490Adjusted R-squared0.998895 S.D. dependent var4843.265S.E. of regression255.0939 Akaike info criterion14.04105Sum squared resid1756968. Schwarz criterion14.2260
44、9Log likelihood-213.6363 Hannan-Quinn criter.14.10137F-statistic9043.425 Durbin-Watson stat1.238294Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.999781 Mean dependent var16520.73Adjusted R-squared0.999756
45、0; S.D. dependent var22001.07S.E. of regression343.5156 Sum squared resid3186080.Durbin-Watson stat1.099033经比较可知,用权数w3的效果最好,修正后的模型为:=2179.146+0.988129X2-0.038288X3+0.045264X4t=(8.210839)(18.41153)(-6.768766)(2.951390)R2=0.999006 =0.998895 F=9043.425 DW=1.238294八、自相关的检验及其修
46、正8.1自相关的检验1%的显著性水平,查DW统计表可知,dL=0.960 dU1.510。此模型DW值为1.238294。为无法判断的区域。此时只能改用图示法来检验。通过EViews软件得出该模型的残差图如下上图表明模型显然存在自相关。在这里我们使用广义差分法进行弥补。8.2自相关修正Dependent Variable: EMethod: Least SquaresDate: 05/20/12 Time: 14:47Sample (adjusted): 1981 2010Included observations: 30 after adjustmentsVariableCoefficien
47、tStd. Errort-StatisticProb. E(-1)0.4206670.2216801.8976300.0677R-squared0.110457 Mean dependent var0.114935Adjusted R-squared0.110457 S.D. dependent var331.4580S.E. of regression312.6166 Akaike info criterion14.36060Sum squared resid2834145. Schwarz criterion14.40730Log likelihood-214.4090 Hannan-Quinn criter.14.37554Durbin-Watson stat1.188304=0.420667et-1由此可知=0.420667,对原模型进行广义差分,得到广义差分方程为:Yt-0.420667Yt-1=0(1-0.420667)+2(X2t-0.420667X2t-1)+3(X3t-0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国仁用杏项目创业计划书
- 中国可穿戴医疗设备项目创业计划书
- 中国金盏花项目创业计划书
- 中国内容分析软件项目创业计划书
- 中国电子睡眠仪项目创业计划书
- 乐理级考试试题及答案
- 设施管理人才职业发展路径-洞察阐释
- 2025合同范本商业店铺外墙广告位租赁合同样本
- 生态移民安置房置换与交易服务合同
- 商业街区店面全面转让及装修工程合同
- 医疗美容行业美容管理流程标准化解决方案
- 新《安全生产法》安全培训
- 《工贸企业重大事故隐患判定标准》培训
- 《南海争端问题》课件
- 【MOOC】工业设计面面观-郑州大学 中国大学慕课MOOC答案
- 中央空调更换压缩机维修合同书
- 《中小学生时间规划管理主题班会:做时间的主人》课件(五套)
- (完整版)英语四级词汇表
- 【生物】鱼课件+2024-2025学年人教版生物七年级上册
- 2024年江苏省南通市中考化学试卷真题(含答案解析)
- 工业污水处理的PLC控制
评论
0/150
提交评论