




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 市场经济中的蛛网模型市场经济中的蛛网模型 混沌混沌-差分形式的阻滞增长差分形式的阻滞增长 模模 型型 差分方程模型差分方程模型 市场经济中的蛛网模型市场经济中的蛛网模型问问 题题供大于求供大于求现现象象商品数量与价格的振荡在什么条件下趋向稳定商品数量与价格的振荡在什么条件下趋向稳定当不稳定时政府能采取什么干预手段使之稳定当不稳定时政府能采取什么干预手段使之稳定价格下降价格下降减少产量减少产量增加产量增加产量价格上涨价格上涨供不应求供不应求描述商品数量与价格的变化规律描述商品数量与价格的变化规律数量与价格在振荡数量与价格在振荡蛛蛛 网网 模模 型型gx0y0P0fxy0 xk第第k时段商品数量
2、;时段商品数量;yk第第k时段商品价格时段商品价格消费者的需求关系消费者的需求关系)(kkxfy 生产者的供应关系生产者的供应关系减函数减函数增函数增函数供应函数供应函数需求函数需求函数f与与g的交点的交点P0(x0,y0) 平衡点平衡点一旦一旦xk=x0,则,则yk=y0, xk+1,xk+2,=x0, yk+1,yk+2, =y0 )(1kkyhx)(1kkxgyxy0fgy0 x0P0设设x1偏离偏离x0 x1x2P2y1P1y2P3P4x3y332211xyxyx0321PPPP00,yyxxkkP0是稳定平衡点是稳定平衡点P1P2P3P4P0是不稳定平衡点是不稳定平衡点gfKKxy0
3、y0 x0P0fg)(kkxfy )(1kkyhx)(1kkxgy00,yyxxkk gfKK曲线斜率曲线斜率蛛蛛 网网 模模 型型0321PPPP )(kkxfy )(1kkyhx在在P0点附近用直线近似曲线点附近用直线近似曲线)0()(00 xxyykk)0()(001yyxxkk)(001xxxxkk)()(0101xxxxkk1P0稳定稳定P0不稳定不稳定0 xxkkxfKgK/1)/ 1()/ 1(1方方 程程 模模 型型gfKKgfKK方程模型与蛛网模型的一致方程模型与蛛网模型的一致)(00 xxyykk 商品数量减少商品数量减少1单位单位, 价格上涨幅度价格上涨幅度)(001yy
4、xxkk 价格上涨价格上涨1单位单位, (下时段下时段)供应的增量供应的增量考察考察 , 的含义的含义 消费者对需求的敏感程度消费者对需求的敏感程度 生产者对价格的敏感程度生产者对价格的敏感程度 小小, 有利于经济稳定有利于经济稳定 小小, 有利于经济稳定有利于经济稳定结果解释结果解释xk第第k时段商品数量;时段商品数量;yk第第k时段商品价格时段商品价格1经济稳定经济稳定结果解释结果解释经济不稳定时政府的干预办法经济不稳定时政府的干预办法1. 使使 尽量小,如尽量小,如 =0 以行政手段控制价格不变以行政手段控制价格不变2. 使使 尽量小,如尽量小,如 =0靠经济实力控制数量不变靠经济实力控
5、制数量不变xy0y0gfxy0 x0gf结果解释结果解释需求曲线变为水平需求曲线变为水平供应曲线变为竖直供应曲线变为竖直2/ )(0101yyyxxkkk模型的推广模型的推广 生产者根据当前时段和前一时生产者根据当前时段和前一时段的价格决定下一时段的产量。段的价格决定下一时段的产量。)(00 xxyykk生产者管理水平提高生产者管理水平提高设供应函数为设供应函数为需求函数不变需求函数不变, 2 , 1,)1 (22012kxxxxkkk二阶线性常系数差分方程二阶线性常系数差分方程x0为平衡点为平衡点研究平衡点稳定,即研究平衡点稳定,即k, xkx0的条件的条件)(1kkyhx211kkkyyh
6、x48)(22, 1012)1 (22xxxxkkk方程通解方程通解kkkccx2211(c1, c2由初始条件确定由初始条件确定) 1, 2特征根,即方程特征根,即方程 的根的根 022平衡点稳定,即平衡点稳定,即k, xkx0的条件的条件:12,12平衡点稳定条件平衡点稳定条件比原来的条件比原来的条件 放宽了放宽了122, 1模型的推广模型的推广 分岔与混沌分岔与混沌内容目录 哲学与研究 分形几何的产生 混沌现象的出现哲学与研究 哲学是人类认识世界的最高层次的思考。 寻找世界的本原问题; 人类在世界中的位置,即人类作为认识的主体在研究中的重要性。 了解哲学是从总体上、大局上把握世界;把握研
7、究的方向,不至于走入死胡同。付里叶变换 Fourier是法国大革命时期的数学家,他在频谱分析领域做有卓越的贡献。 在当时,拿破仑时代,科学界流行一种哲学:世界是有“基元”组成的,任何一种物质只是基元的加权的代数和。基元是什么? 运动是物质的一种存在形态,也应该具有一种相同的特性,即运动应由基元组成。付里叶变换(续) Fourier通过研究“振动弦”的运动得出一个规律:即振动弦的运动可以分解为多个“正弦”信号的和。 又通过对很多现象的研究,Fourier得出一个结论:任何一个信号可以分解为多个“简谐周期函数”的加权和,而sin(x)、cos(x)是最简单的“简谐周期函数”。付里叶变换(续) 由此
8、,付里叶得出如下的结论:)cos()sin(2)(0nwtibnwtaatfnnn任意时间周期信号基元权值常量付里叶变换(续) 从当时的角度(哲学观点)来看,是任何一个信号可以表示为“正弦”信号的加权和,符合哲学观点,推导正确。 当Fourier将论文提交给法国研究院,由Lagrange等三名数学家组成的委员会没有允许该论文的发表,原因是该数学推导不严格, Lagrange提出对于处处不可导的信号(函数)该理论不成立。结 论 在世界是由基元组成这一哲学思想下,产生了一系列的十分有效的技术,可见哲学对研究的意义。 相反,如果没有一种哲学思想,我们的研究如何归纳总结出一种一般的规律?总结出的规律正
9、确与否? 马恩格思。数学分析八讲两个重要的现象研究对象 欧几里得几何学的研究对象是具有特征长度的几何物体: 一维空间:线段,有长度,没有宽度; 二维空间:平行四边形,有周长、面积; 三维空间:球,表面积、体积; 自然界中很多的物体具有特征长度,诸如:人有高度、山有海拔高度等。研究对象 有一类问题却比较特别,Mandelbrot就提出了这样一个问题:英国的海岸线有多长?英国的海岸线地图研究对象(续) 当你用一把固定长度的直尺(没有刻度)来测量时,对海岸线上两点间的小于尺子尺寸的曲线,只能用直线来近似。因此,测得的长度是不精确的。 如果你用更小的尺子来刻画这些细小之处,就会发现,这些细小之处同样也
10、是无数的曲线近似而成的。随着你不停地缩短你的尺子,你发现的细小曲线就越多,你测得的曲线长度也就越大。 如果尺子小到无限,测得的长度也是无限。 研究对象(续) 得到的结论是:海岸线的长度是多少:决定与尺子的长短。 海岸线的长度是无限的! 而显然海岸线的面积为零; 而我们确实看到了海岸线的存在,而且海岸线应该是有界的。 海岸线什么有界?(长度、面积、体积显然无界)。Koch 曲线Koch 曲线(续) Koch曲线曾经在数学界成为一个魔鬼。 同样的道理:长度无限、面积为零、而曲线还有“界”。 另外,有一个特点:当取其中的一部分展开,与整体有完全的自相似性,似乎是一个什么东西的无数次的自我复制。自然界
11、中的其他事物 取下一片蕨类植物叶子似乎与整体有某种相似性。 England的海岸线从视觉上也感觉有某种自相似性分形几何学的产生分形几何学的产生混沌的思想混沌 -由一定的非線性作用導致,在確定性系統 中出現極其複雜、貌似無規的運動。混沌的产生 下面是著名的洛伦兹吸引子。洛伦兹(E.N.Lorenz)是当代世界知名的动力气象学家、混沌理论的少有几位创立者之一。他在1963年发表的关于混沌理论的开创性研究在被冷落了12年之久以后才得到广泛承认,并很快引发对混沌研究的热潮,由此诞生和发展起了一门新兴学科混沌理论,成为现代新兴学科的代表。洛伦兹吸引子方程如下: Lorenz動力方程式 dx / dt =
12、 -(x y) dy / dt = -xz + x y dz / dt = xy bz x, y, z : 速度、溫度、溫度梯度 ,b : 確定的控制參數 運動軌跡 確定性 繞A、B兩點 進入混沌進入混沌一维逻辑斯蒂映射一维逻辑斯蒂映射 映射(mapping)也叫迭代(iteration) xn+1=2xn,若x1=3 ,则x2=6,x3=12。 从控制系统的角度看,这也叫反馈(feedback),把输出当作输入,不断滚动。很容易想到,反馈的结果有若干种: 发散的、收敛的、周期的等等。 但是我们要问一下,一共有多少种可能的运动类型?是否存在既不收敛也不发散,也不周期循环的迭代过程?这就是有界非
13、周期运动,它与混沌有关这就是有界非周期运动,它与混沌有关)1()(Nxrxtx,2, 1),1 (1kNyryyykkkk 差分形式的阻滞增长模型差分形式的阻滞增长模型连续形式连续形式的阻滞增长模型的阻滞增长模型 (Logistic模型模型)t, xN, x=N是是稳定平衡点稳定平衡点(与与r大小无关大小无关)离散离散形式形式x(t) 某种群某种群 t 时刻的数量时刻的数量(人口人口)yk 某种群第某种群第k代的数量代的数量(人口人口)若若yk=N, 则则yk+1,yk+2,=N讨论平衡点的稳定性,即讨论平衡点的稳定性,即k, ykN ?y*=N 是平衡点是平衡点kkyNrrx) 1( 1rb
14、记) 1 ()1 (1Nyryyykkkk离散形式阻滞增长模型的平衡点及其稳定性离散形式阻滞增长模型的平衡点及其稳定性kkkyNrryry) 1(1) 1(1)2()1 (1kkkxbxx一阶一阶(非线性非线性)差分方程差分方程 (1)的平衡点的平衡点y*=N讨论讨论 x* 的稳定性的稳定性变量变量代换代换(2)的平衡点的平衡点brrx111*(1)的平衡点的平衡点 x*代数方程代数方程 x=f(x)的根的根稳定性判断稳定性判断)2()()(*1xxxfxfxkk(1)的近似线性方程的近似线性方程x*也是也是(2)的平衡点的平衡点1)(* xfx*是是(2)和和(1)的稳定平衡点的稳定平衡点1
15、)(* xfx*是是(2)和和(1)的不稳定平衡点的不稳定平衡点补充知识补充知识一阶非线性差分方程一阶非线性差分方程) 1 ()(1kkxfx的平衡点及稳定性的平衡点及稳定性)21()(*xbxf1)(* xf0yxxy )(xfy 4/b*x2/11)1 ()(xbxxfx)1 (1kkkxbxx的平衡点及其稳定性的平衡点及其稳定性平衡点平衡点bx11*稳定性稳定性31 b2/ 1/ 11*bx*xxk(单调增)0 x1x1x2xx* 稳定稳定21)1( b) 1)(3*xfbx* 不不稳定稳定另一平衡另一平衡点为点为 x=01 rb1)0(bf不稳定不稳定b 23)3(b01/21y4/bxy )(xfy 0 x1x*x2xx32)2( b2/ 1/ 11*bx*xxk(振荡地)y0 xxy )(xfy 0 x1x2x*x2/114/b*xxk(不))1 (1kkkxbxx的平衡点及其稳定性的平衡点及其稳定性)1 (1kkkxbxx初值初值 x0=0.2数值计算结果数值计算结果b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 12月混凝土搅拌工高级模拟练习题+参考答案解析
- 高级审计师考试经验剖析试题及答案
- 人力资源外包服务协议合同书初稿
- 2025年碳化硅超细粉体项目发展计划
- 购车意向协议书
- 消防资金管理与使用试题及答案
- 消防措施设计试题及答案验证
- it校招面试笔试题目及答案
- 2025网络工程师笔试真题及答案
- 2025年n2护士考试试题及答案
- 初中电与磁试题及答案
- 国家开放大学《西方经济学(本)》章节测试参考答案
- 幼教通识知识试题及答案
- XXXX年云南初中信息技术考试题库
- 历史一战二战试卷及答案
- 2025-2030中国户外背包行业市场发展趋势与前景展望战略研究报告
- 2025广东二模语文(含答案)
- 消渴肾病的中医护理方案
- 《高压输电线路巡检维护合同》
- 《中国古典文学中的咏鱼诗与生态文化》论文
- 商品混凝土管理制度
评论
0/150
提交评论