数学广角鸡兔同笼教学分析_第1页
数学广角鸡兔同笼教学分析_第2页
数学广角鸡兔同笼教学分析_第3页
数学广角鸡兔同笼教学分析_第4页
数学广角鸡兔同笼教学分析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、鸡兔同笼教学分析教学目标1. 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2. 尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。3. 在解决问题的过程中培养学生的逻辑推理能力。教材说明和教学建议教材说明“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在孙子算经中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。本单元教材在编排上有以下几个特点:1. 由孙子算经中的“鸡兔同笼”问题引入,激发学生的解题兴趣。教材首先通过富有情趣的古代课堂,生动地呈现了在孙子算经中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生

2、解答我国古代著名数学问题的兴趣。2. 注重体现解决“鸡兔同笼”问题的不同思路和方法。考虑到孙子算经中原题的数据较大,教材在例1中从数据较小的问题入手,让学生尝试解决。体现了学生从猜测到用“假设法”和列方程的方法解决问题的探究过程,同时也表达了解决“鸡兔同笼”问题的不同思路和方法。教材除例1中运用的方法外,在阅读材料中也介绍了一种古人常用的解决该类问题的方法,让学生感受古人巧妙的解题思路。3. 拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应

3、用,并巩固用“假设法”或方程的方法来解决这类问题。教学建议1. 注意渗透化繁为简的思想。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决孙子算经中数据较大的原题。教学时,教师应注意使学生体会这一点。2. 适当把握教学要求。解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,即猜测、列表假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程解则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求

4、用某一种方法。具体内容的说明和教学建议(第112117页)1. 情景图和例1。编写意图“鸡兔同笼”问题是我国古代著名的数学问题,本单元借助古代课堂的情境对孙子算经中记载的“鸡兔同笼”原题进行了介绍,并通过学生冥思苦想该问题的画面激发学生解决该类问题的兴趣。由于“鸡兔同笼”原题的数据较大,不便于学生进行探究,所以教材以化繁为简的思想为指导,先在例1中安排一道数据较小的“鸡兔同笼”问题让学生探索解决的方法。在分析解答部分,教材首先呈现了学生最“朴素”的想法猜测。分别猜测鸡、兔各有多少只,然后验证脚的只数是否对应,通过这种不断地猜测、尝试最终找到答案,例1的表格可帮助学生按顺序寻找答案,虽然也可以解

5、决问题,但当数据较大时过程颇为繁琐。因此,教材通过小精灵的提问:“还有其他方法吗?”引导学生思考更具有逻辑性和一般性的解法,教材中主要呈现了最典型的“假设法”和列方程的解法。“假设法”是一种算术方法,但有其独特的特点,是一个假设计算推理解答的过程。例1中就是通过假设笼子里都是鸡,然后通过计算实际与假设情况下总脚数之差,进而推理出鸡、兔的只数。实际上“假设法”可以有很多巧妙的思路,“阅读资料”中介绍的“抬腿法”也是其中之一,这类方法有助于培养学生的逻辑思维能力。列方程则是一种代数解法,通过假设鸡或兔任何一个量为x,然后根据只数与脚数之间的数量关系列出方程并求解即可。这种方法具有一般性,数量关系明

6、确,便于学生理解。在掌握上述两种基本解法的基础上,教材呼应孙子算经中鸡兔同笼的原题,让学生在解决该问题的过程中进一步巩固前面所学的解题方法。在日常生活中,“鸡兔同笼”问题有很多的变式,教材在“做一做”中安排的日本民间流传的“龟鹤问题”以及租船、植树等实际问题均与“鸡兔同笼”本质相同,通过让学生解决这些相关的问题,一方面让学生进一步明确“鸡兔同笼”问题的实质,了解其在生活中的广泛应用;另一方面也可以巩固解决这类问题的方法。教学建议教学时,教师可以直接介绍:“在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一”。有条件的学校还可以通过图片或是投影片等方式将主题图中的情境生动地演示出来,需要注

7、意的是,如果学生不能够理解古文中的含义,老师可以帮助学生翻译过来,确保学生正确理解题意,保持对该类问题的好奇心。由于原题的数据比较大,不便于学生探究、解决时会有一定的困难。老师可引导学生从简单问题着手,待学生探索出解决问题的一般方法时再解决这些比较复杂的问题。教师出示例1后,可让学生先说一说可以怎样解决。一般而言,学生最初很容易选择最“朴素”的做法猜测,比如猜测有3只兔,5只鸡,计算出一共有22只脚,而实际有26只脚,再根据结果调整猜测结论,将兔的只数增加,再来验证结果,依此类推直至脚的总数与题中所述吻合。这种猜测虽然也能解决问题,但是效率很低,尤其当数据较大时需要花费很长时间,显然不是解决该

8、类问题的最佳方法。那么,还有其他的方法吗?老师可让学生通过小组讨论寻找更为便捷的解决方法,在学生讨论期间,老师可在组间巡视并加以适当引导。如果有的学生茫然无绪,老师可启发学生思考:“假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?”引导学生解决问题。在小组汇报时,老师注意要求学生清楚的表达思考的过程和解决问题的方法。事实上,假设法有多种思路,除假设笼子里都是鸡或者都是兔的方法外,阅读材料中的抬腿法也是假设法的一种。每种思路还可以附以形象的解释,如让所有的兔子都抬起两只前脚,实际上就是把笼子里的动物都看成鸡。当然,还可以假设鸡也有4只脚,把笼子里的动物都看成兔子。在课堂上,可能相当一部分学生会

9、选择用列方程的方法来解决该类问题,设鸡或兔任何一个量为x,然后根据鸡、兔的只数与脚的总只数的关系列出方程并进行解答。这种方法思路清晰,易于理解,教学中老师注意让学生体会方程解法的一般性。教师在明确学生已经掌握解决该类问题的基本解法后可回到孙子算经中的原题,让学生进行解决,巩固解决该类问题的方法。在课堂练习环节,教师可以结合“做一做”中的三道题让学生来感受“鸡兔同笼”问题的变式及其在生活中的广泛应用。可让学生自己独立完成这些问题,然后再集体订正。2. 关于练习二十六中一些习题的说明和教学建议。第2题是体育活动中的“鸡兔同笼”问题。解答时要让学生明确篮球比赛中的得分规则及本题条件,并注意识别本题中的无关信息“我投了15个球。”第4题是知识抢答中的“鸡兔同笼”问题。如果用“假设法”解决,要注意答对一题比答错一题要多得10616分,而不是1064分。答错一题则比答对一题要少得16分。第6题是一个游戏活动,和鸡兔同笼问题很相似。实际操作时5分和2分的硬币也可以换成其他方便的教具,如5角和1角的硬币等。思考题安排了另一个类似的古代数学趣题“100个和尚吃100个馒头”,这个问题同样可以用“假设法”或列方程来求解。也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论