初中数学一元二次方程复习专题_第1页
初中数学一元二次方程复习专题_第2页
初中数学一元二次方程复习专题_第3页
初中数学一元二次方程复习专题_第4页
初中数学一元二次方程复习专题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上一元二次方程专题复习韦达定理:如一元二次方程的两根为,则,适用题型:(1)已知一根求另一根及未知系数; (2)求与方程的根有关的代数式的值; (3)已知两根求作方程; (4)已知两数的和与积,求这两个数; (5)确定根的符号:(是方程两根); (6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是的两直角边求斜边等情况.注意:(1) (2); (3)方程有两正根,则; 方程有两负根,则 ;方程有一正一负两根,则;方程一根大于,另一根小于,则(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方

2、程时,一般把所求作得方程的二次项系数设为,即以为根的一元二次方程为;求字母系数的值时,需使二次项系数,同时满足;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和,两根之积的代数式的形式,整体代入。4用配方法解一元二次方程的配方步骤:例:用配方法解第一步,将二次项系数化为:,(两边同除以)第二步,移项: 第三步,两边同加一次项系数的一半的平方:第四步,完全平方:第五步,直接开平方:,即:,一元二次方程的定义与解法Ø 【要点、考点聚焦】1. 加深理解一元二次方程的有关概念及一元二次方程的一般形式;2.熟练地应用不同的方法解方程;直接开平方法、配方法、公式法、因式分解法;并体会

3、“降幂法”在解方程中的含义.(其中配方法很重要)Ø 【课前热身】1. 当_时,方程是一元二次方程.2. 已知是方程的一个根,则方程的另一根为_.3.一元二次方程的解是_.4. 若关于的一元二次方程,且,则方程必有一根为_.5. 用配方法解方程,则下列配方正确的是( )A. B. C. D.Ø 【典型例题解析】1、关于的一元二次方程中,求的取值范围.2、已知:关于的方程的一个根是,求方程的另一个根及的值。3、用配方法解方程:【考点训练】1、关于的一元二次方程的一个根是,则的值为( )A. B. C.或 D.2、解方程的最适当的方法(    )A.

4、 直接开平方法    B. 配方法 C. 因式分解法      D. 公式法3、若,则一元二次方程有一根是(   )A. 2         B. 1            C. 0            &#

5、160;  D. 14、当_时,不是关于的一元二次方程.5、已知方程,则代数式_.一元二次方程根的判别式Ø 【要点、考点聚焦】1.一元二次方程根的情况与的关系;2.一元二次方程根的判别式的性质反用也成立,即已知根的情况,可以得到一个等式或不等式,从而确定系数的值或取值范围Ø 【课前热身】1.若关于的一元二次方程有实数根,则的取值范围是( ) A. B. 且 C. D. 且2. 一元二次方程的根的情况为()A.有两个相等的实数根    B.有两个不相等的实数根 C.只有一个实数根   D

6、. 没有实数根3.已知关于的一元二次方程.请你为选取一个合适的整数,当_时,得到的方程有两个不相等的实数根;4.若关于的方程有两个相等的实数根,求的取值范围Ø 【典型考题】1.已知关于的方程,当为何非负整数时:(1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根.2.已知是三角形的三条边,求证:关于的方程没有实数根.【课时训练】1、一元二次方程的根的情况为()A.有两个相等的实数根   B.有两个不相等的实数根 C.只有一个实数根    D.没有实数根2、已知关于的一元二次方程有两个不相等的实数根,则的取值范

7、围是(     ) A.         B.         C.          D.3、一元二次方程有两个不相等的实数根,则的取值范围是_. 4、求证:关于的方程有两个不相等的实数根。课后练习一、填空题1、关于的方程是一元二次方程,则的取值范围是      _  .2、若

8、是关于的方程的根,则的值为      _  .3、方程的根的情况是_.4、写出一个既能直接开方法解,又能用因式分解法解的一元二次方程是.5、在实数范围内定义一种运算“”,其规则为,根据这个规则,方程的解为_.6、如果关于的一元二次方程有两个实数根,则的取值范围是_。7、设是一元二次方程的两个根,则代数式的值为_.8、 是整数,已知关于的一元二次方程只有整数根,则=_.二、选择题1、关于的方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定2、已知方程有一个根是,则下列代数式的值恒

9、为常数的是( )A、 B、 C、 D、3、方程的解是(    )A.          B.            C.        D. 无实数根4、若关于的一元二次方程没有实数根,那么的最小整数值是(    )    A. 1    

10、           B. 2               C. 3               D. 5、如果是一元二次方程的一个根,是一元二次方程的一个根,那么的值是( )A、1或2 B、0或 C、或 D、0或36、设是方程的较大的一根,是方程的较小的一根,则(    )  A.           B.            C. 1               D.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论