离散数学习题解答_第1页
离散数学习题解答_第2页
离散数学习题解答_第3页
离散数学习题解答_第4页
离散数学习题解答_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、习题1.11. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。 中国有四大发明。 计算机有空吗? 不存在最大素数。 21+35。 老王是山东人或河北人。 2与3都是偶数。 小李在宿舍里。 这朵玫瑰花多美丽呀! 请勿随地吐痰! 圆的面积等于半径的平方乘以p。 只有6是偶数,3才能是2的倍数。 雪是黑色的当且仅当太阳从东方升起。如果天下大雨,他就乘班车上班。解:是命题,其中是真命题,是假命题,的真值目前无法确定;不是命题。2. 将下列复合命题分成若干原子命题。 李辛与李末是兄弟。 因为天气冷,所以我穿了羽绒服。 天正在下雨或湿度很高。 刘英与李进上山。 王强与刘威都学过法语。 如

2、果你不看电影,那么我也不看电影。我既不看电视也不外出,我在睡觉。 除非天下大雨,否则他不乘班车上班。解:本命题为原子命题;p:天气冷;q:我穿羽绒服;p:天在下雨;q:湿度很高;p:刘英上山;q:李进上山;p:王强学过法语;q:刘威学过法语;p:你看电影;q:我看电影;p:我看电视;q:我外出;r:我睡觉;p:天下大雨;q:他乘班车上班。3. 将下列命题符号化。 他一面吃饭,一面听音乐。 3是素数或2是素数。 若地球上没有树木,则人类不能生存。 8是偶数的充分必要条件是8能被3整除。 停机的原因在于语法错误或程序错误。 四边形ABCD是平行四边形当且仅当它的对边平行。 如果a和b是偶数,则a+

3、b是偶数。解:p:他吃饭;q:他听音乐;原命题符号化为:pqp:3是素数;q:2是素数;原命题符号化为:pqp:地球上有树木;q:人类能生存;原命题符号化为:ØpØqp:8是偶数;q:8能被3整除;原命题符号化为:pqp:停机;q:语法错误;r:程序错误;原命题符号化为:qrpp:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:pq。p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:pqr4. 将下列命题符号化,并指出各复合命题的真值。如果3+3=6,则雪是白的。 如果3+36,则雪是白的。 如果3+3=6,则雪不是白的。 如果3+36

4、,则雪不是白的。是无理数当且仅当加拿大位于亚洲。 2+3=5的充要条件是是无理数。(假定是10进制) 若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。 当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。解:设p:336。q:雪是白的。原命题符号化为:pq;该命题是真命题。原命题符号化为:Øpq;该命题是真命题。原命题符号化为:pØq;该命题是假命题。原命题符号化为:ØpØq;该命题是真命题。p:是无理数;q:加拿大位于亚洲;原命题符号化为:pq;该命题是假命题。p:2+35;q:是无理数;原命题符号化为:pq;该命题是真命题。p:两圆

5、O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:pq;该命题是真命题。p:王小红心情愉快;q:王小红唱歌;原命题符号化为:pq;该命题是真命题。习题1.21.判断下列公式哪些是合式公式,哪些不是合式公式。 (pqr) (p(qr) (Øpq)(rs) (pqrs) (p(qr)(qp)qr)。解:是合式公式;不是合式公式。2.设p:天下雪。q:我将进城。r:我有时间。将下列命题符号化。 天没有下雪,我也没有进城。 如果我有时间,我将进城。 如果天不下雪而我又有时间的话,我将进城。解: ØpØq rq Øprq 3.设p、q、r所表示的

6、命题与上题相同,试把下列公式译成自然语言。 rq ¬ (rq) q (r¬ p) (qr)(rq) 解: 我有时间并且我将进城。 我没有时间并且我也没有进城。 我进城,当且仅当我有时间并且天不下雪。 如果我有时间,那么我将进城,反之亦然。4. 试把原子命题表示为p、q、r等,将下列命题符号化。 或者你没有给我写信,或者它在途中丢失了。 如果张三和李四都不去,他就去。 我们不能既划船又跑步。 如果你来了,那末他唱不唱歌将看你是否伴奏而定。解: p:你给我写信;q:信在途中丢失;原命题符号化为:(ØpØ q)(pq)。p:张三去;q:李四去;r:他去;原命题

7、符号化为:ØpØqr。p:我们划船;q:我们跑步;原命题符号化为:Ø(pq)。p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p(qr)。5. 用符号形式写出下列命题。假如上午不下雨,我去看电影,否则就在家里读书或看报。我今天进城,除非下雨。仅当你走,我将留下。解:p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符号化为:(Øpq)(prs)。p:我今天进城;q:天下雨;原命题符号化为:Øqp。p:你走;q:我留下;原命题符号化为:qp。习题1.31.设A、B、C是任意命题公式,证明:AÛA若AÛB,

8、则BÛA若AÛB,BÛC,则AÛC证明:由双条件的定义可知AA是一个永真式,由等价式的定义可知AÛA成立。因为AÛB,由等价的定义可知AB是一个永真式,再由双条件的定义可知BA也是一个永真式,所以,BÛA成立。对A、B、C的任一赋值,因为AÛB,则AB是永真式, 即A与B具有相同的真值,又因为BÛC,则BC是永真式, 即B与C也具有相同的真值,所以A与C也具有相同的真值;即AÛC成立。2.设A、B、C是任意命题公式,若ACÛBC, AÛB一定成立吗?若ACÛBC,

9、AÛB一定成立吗?若¬AÛ¬B,AÛB一定成立吗?解:不一定有AÛB。若A为真,B为假,C为真,则ACÛBC成立,但AÛB不成立。不一定有AÛB。若A为真,B为假,C为假,则ACÛBC成立,但AÛB不成立。一定有AÛB。3.构造下列命题公式的真值表,并求成真赋值和成假赋值。 q(pq)p p(qr) (pq)(qp) (pØq)(rq)r (¬p(p¬q)r)(q¬r)解:q(pq)p的真值表如表1.24所示。表1.24pqpqq(pq

10、)q(pq)p00101011101000111111使得公式q(pq)p成真的赋值是:00,10,11,使得公式q(pq)p成假的赋值是:01。p(qr) 的真值表如表1.25所示。表1.25pqrqrp(qr)0000100111010110111110000101111101111111 使得公式p(qr)成真的赋值是:000,001,010,011,101,110,111,使得公式p(qr)成假的赋值是:100。(pq)(qp) 的真值表如表1.26所示。表1.26pqpqqp(pq)(qp)00001011111011111111所有的赋值均使得公式(pq)(qp)成真,即(pq)(

11、qp)是一个永真式。(pØq)(rq)r的真值表如表1.27所示。表1.27pqrØqpØqrq(pØq)(rq)(pØq)(rq)r0001000100110001010000010110011110011010101110111100000111100111使得公式(pØq)(rq)r成真的赋值是:000,001,010,011,101,110,111,使得公式(pØq)(rq)r成假的赋值是:100。(Øp(pØq)r)(qØr) 的真值表如表1.28所示。表1.28pqrpØq

12、Øp(pØq)(Øp(pØq)rqØr(Øp(pØq)r)(qØr)0000010100100101010001110110010110011000101111011100101111101101使得公式(Øp(pØq)r)(qØr)成真的赋值是:000,001,010,011,101,110,111,使得公式(Øp(pØq)r)(qØr)成假的赋值是:100。 4.用真值表证明下列等价式:Ø(pq)ÛpØq证明:证明

13、6;(pq)ÛpØq的真值表如表1.29所示。表1.29pqpqØ(pq)ØqpØq001010011000100111111000由上表可见:Ø(pq)和pØq的真值表完全相同,所以Ø(pq)ÛpØq。pqÛØqØp 证明:证明pqÛØqØp的真值表如表1.30所示。表1.30pqpqØpØqØqØp001111011101100010111001由上表可见:pq和ØqØp的

14、真值表完全相同,所以pqÛØqØp。Ø(pq)ÛpØq证明:证明Ø(pq)和pØq的真值表如表1.31所示。表1.31pqpqØ(pq)ØqpØq001010010101100111111000由上表可见:Ø(pq)和pØq的真值表完全相同,所以Ø(pq)ÛpØq。p(qr)Û(pq)r证明:证明p(qr)和(pq)r的真值表如表1.32所示。表1.32pqrqrp(qr)pq(pq)r00011010011101010010

15、101111011001101101110111000101111111由上表可见:p(qr)和(pq)r的真值表完全相同,所以p(qr)Û(pq)r。p(qp)Û Øp(pØq)证明:证明p(qp)和Øp(pØq)的真值表如表1.33所示。表1.33pqqpp(qp)ØpØqpØqØp(pØq)00111111010110111011011111110001由上表可见:p(qp)和Øp(pØq)的真值表完全相同,且都是永真式,所以p(qp)ÛØ

16、p(pØq)。Ø(pq)Û(pq)Ø(pq)证明:证明Ø(pq)和(pq)Ø(pq)的真值表如表1.34所示。表1.34pqpqØ(pq)pqpqØ(pq)(pq)Ø(pq)00100010010110111001101111101100由上表可见:Ø(pq)和(pq)Ø(pq)的真值表完全相同,所以Ø(pq)Û(pq)Ø(pq)Ø(pq)Û(pØq)(Øpq) 证明:证明Ø(pq)和(pØq)(

17、Øpq)的真值表如表1.35所示。表1.35pqpqØ(pq)pØqØpq(pØq)(Øpq)0010000010101110011011110000由上表可见:Ø(pq)和(pØq)(Øpq)的真值表完全相同,所以Ø(pq)Û(pØq)(Øpq)。p(qr)Û(pØq)r证明:证明p(qr)和(pØq)r的真值表如表1.36所示。表1.36pqrqrp(qr)ØqpØq(pØq)r000011010011

18、1101010110010111100110000110101111111101100111111001由上表可见:p(qr)和(pØq)r的真值表完全相同,所以p(qr)Û(pØq)r。5. 用等价演算证明习题4中的等价式。Ø(pq)ÛØ(Øpq)(条件等价式)ÛpØq(德·摩根律)ØqØpÛØØqØp(条件等价式)ÛqØp(双重否定律)ÛØpq(交换律)Û pq(条件等价式)

19、6;(pq)ÛØ(pq)(qp)(双条件等价式)ÛØ(Øpq)(Øqp)(条件等价式)Û(pØq)(qØp)(德·摩根律)Û(pØq)q)(pØq)Øp)(分配律)Û(pq)(ØqØp)(分配律)Û(ØpØq)(qp)(交换律)Û(pØq)(Øqp)(条件等价式)ÛpØq(双条件等价式)p(qr)ÛØp(Øqr)(条件

20、等价式)Û(ØpØq)r(结合律)ÛØ(pq)r(德·摩根律)Û(pq)r(条件等价式)p(qp)ÛØp(Øqp)(条件等价式)ÛTØp(pØq)Ûp(ØpØq)(条件等价式)ÛT所以p(qp)Û Øp(pØq)Ø(pq)ÛØ(pq)(ØpØq)(例1.17)Û(pq)(ØpØq)(德·摩根律)Û(

21、pq)Ø(pq)(德·摩根律)所以Ø(pq)Û(pq)Ø(pq)Ø(pq)ÛØ(pq)(qp)(双条件等价式)ÛØ(Øpq)(Øqp)(条件等价式)Û(pØq)(Øpq)(德·摩根律)p(qr)ÛØp(qr)(条件等价式)Û(Øpq)r(结合律)ÛØ(pØq)r(德·摩根律)Û(pØq)r(条件等价式)6.试用真值表证明下列命题定律。结合

22、律:(pq)rÛp(qr),(pq)rÛp(qr)证明:证明结合律的真值表如表1.37和表1.38所示。表1.37pqrpq(pq)rqrp(qr)00000000010111010111101111111001101101111111011111111111表1.38pqrpq(pq)rqrp(qr)00000000010000010000001100101000000101000011010001111111由真值表可知结合律成立。分配律:p(qr)Û(pq)(pr),p(qr)Û(pq)(pr)证明:证明合取对析取的分配律的真值表如表1.39所示,

23、析取对合取的的分配律的真值表如表1.40所示。表1.39pqrqrp(qr)pqpr(pq)(pr)0000000000110000010100000111000010000000101110111101110111111111表1.40pqrqrp(qr)pqpr(pq)(pr)0000000000100010010001000111111110001111101011111100111111111111由真值表可知分配律成立。假言易位式:pqÛØqØp证明:证明假言易位式的真值表如表1.41所示。表1.41pqpqØqØpØq&#

24、216;p001111011011100100111001由真值表可知假言易位律成立。双条件否定等价式:pqÛØpØq证明:证明双条件否定的真值表如表1.42所示。表1.42pqpqØpØqØpØq001111010100100010111001由真值表可知双条件否定等价式成立。习题 1.4 1.用真值表或等价演算判断下列命题公式的类型。(pØq)qÛØ(pØq)q(条件等价式)Û(Øpq)q(德·摩根律)Ûq(可满足式)(吸收律)Ø(

25、pq)qÛØ(Øpq)q(条件等价式)Û(pØq)q(德·摩根律)ÛF(永假式)(结合律、矛盾律)(pq)pqÛ(Øpq)pq(条件等价式)Û(Øpp)(qp)q(分配律)Û(qp)q(同一律、矛盾律)ÛØ(qp)q(条件等价式)Û(ØqØp)q(德·摩根律)ÛT(永真式)(零律、排中律)(pq)qÛ(Øpq)q(条件等价式)Ûq(可满足式)(吸收律)(pq)(Øq&

26、#216;p)Û(pq)(pq)(假言易位式)ÛT(永真式)(pq)(qr)(pr)ÛØ(Øpq)(Øqr)(Øpr)(条件等价式)Û(pØq)(qØr)(Øpr)(德·摩根律)Û(pØq)(Øpqr)(ØpØrr)(分配律)Û(pØq)(Øpqr)(同一律、排中律、零律)Û(Øpqrp)(ØpqrØq)(分配律)ÛT(永真式)Øp(pq

27、)Û p(Øpq)(条件等价式)ÛT(永真式)p(pqr)ÛØp(pqr)(条件等价式)ÛT(永真式)2.用真值表证明下列命题公式是重言式。(p(pq)q(p(pq)q的真值表如表1.43所示。由表1.43可以看出(p(pq)q是重言式。表1.43pqpqp(pq)(p(pq)q00101011011000111111(Øq(pq)Øp(Øq(pq)Øp的真值表如表1.44所示。由表1.44可以看出(Øq(pq)Øp是重言式。表1.44pqpqØqØq(p

28、q)Øp(Øq(pq)Øp0011111011001110010011110001(Øp(pq)q(Øp(pq)q的真值表如表1.45所示。由表1.45可以看出(Øp(pq)q是重言式。表1.45pqpqØ pØp(pq)(Øp(pq)q000101011111101001111001(pq)(qr)(pr)(pq)(qr)(pr)的真值表如表1.46所示。由表1.46可以看出(pq)(qr)(pr)是重言式。表1.46pqrpqqr(pq)(qr)pr(pq)(qr)(pr)00011111001111

29、11010100110111111110001001101010111101000111111111(pq)(pr)(qr)r(pq)(pr)(qr)r的真值表如表1.47所示。由表1.47可以看出(pq)(pr)(qr)r是重言式。表1.47pqrpqprqr(pq)(pr)(qr)(pq)(pr)(qr)r0000110100101101010110010111111110010101101111111101000111111111(pq)(rs)(pr)(qs)(pq)(rs)(pr)(qs)的真值表如表1.48所示。由表1.48可以看出(pq)(rs)(pr)(qs)是重言式。表1.4

30、8pqrspqrs(pq)(rs)prqs(pr)(qs)原公式00001110011000111100110010100001100111110011010011100110101111011101101000011011111101111000010001110010100011101000010011011010100111001110011110111101111110100100111111111111(pq)(qr)(pr)(pq)(qr)(pr)的真值表如表1.49所示。由表1.49可以看出(pq)(qr)(pr)是重言式。表1.49pqrpqqr(pq)(qr)pr(pq)(q

31、r)(pr)00011111001100010100001101101001100010011010001111010001111111113. 用等价演算证明题2中的命题公式是重言式。(p(pq)qÛØ(p(Øpq)qÛ(Øp(pØq)qÛ(Øpp)(ØpØq)qÛ(ØpØq)qÛT(Øq(pq)ØpÛ(Øq(Øpq)ØpÛØ(Øq(Øpq)Øp

32、Û(q(pØq)ØpÛ(Øpq)(pØq)ÛØ(pØq)(pØq)ÛT(Øp(pq)qÛ(Øpq)qÛØ(Øpq)qÛpØqqÛT(pq)(qr)(pr)ÛØ(Øpq)(Øqr)(Øpr)Û(pØq)(qØr)(Øpr)Û(pØq)(Øpqr)(ØpØrr)&

33、#219;(pØq)(Øpqr)Û(Øpqrp)(ØpqrØq)ÛT(pq)(pr)(qr)rÛ(pq)(Øpr)(Øqr)rÛ(pq)(Ø(pq)r)rÛ(pq)r)rÛØ(pq)r)rÛØ(pq)ØrrÛT(pq)(rs)(pr)(qs)ÛØ(Øpq)(Ørs)(Ø(pr)(qs)Û(pØq)(rØs)(Øp

34、16;r)(qs)Û(pØq)(rØs)(ØpØrq)(ØpØrs)Û(pØq)(rØs)(ØpØrq)(pØq)(rØs)(ØpØrs)Û(rØs)(ØpØrqp)(ØpØrqØq)(rØs)(ØpØrsp)(ØpØrsØq)Û(rØs)T)(rØs)(ØpØ

35、;qØrs)Û(rØs)(ØpØqØrs)Û(ØpØqØrsr)(ØpØqØrsØs)ÛT(pq)(qr)(pr)Û(Øpq)(Øqp)(Øqr)(Ørq)(pr)ÛØ(Øpq)(Øqp)(Øqr)(Ørq)(pr)(ØpØr)Û(pØq)(pr)(rØq)(qØr)(q

36、6;p)(ØpØr)Û(p(Øqr)Ø(Øqr)(rØq)(qØp)(ØpØr)Û(Ø(Øqr)(Øqr)(pØ(Øqr)(rØq)(qØp)(ØpØr)Û(T(pØ(Øqr)(rØq)(qØp)(ØpØr)Ûp(qØr)(rØq)(qØp)(ØpØr)Ûp(

37、qØr)(qØp)(ØpØr)(rØq)Ûp(qØr)(Øp(qØr)Ø(qØr)Ûp(qØr)Øp(Øqr)ÛT4.证明下列等价式:(pr)(qr)Û(Øpr)(Øqr)Û(ØpØq)rÛØ(pq)rÛ(pq)r(pq)(pØq)Û(Øpq)(ØpØq)ÛØp(qØq

38、)ÛØpFÛØpp(pq)Ûp(Øpq)Û(pØp)(pq)ÛF(pq)Ûpq习题 1.5 1.求下列命题公式的析取范式。(pØq)rÛØ(pØq)rÛØpqrØ(pq)rÛØØ(Øpq)rÛ(Øpq)rÛØpqrp(pq)Û p(Øpq)Û(pØp)(pq)Û pq(pq)(qr)Û(&

39、#216;pq)(qr)Û q(Øpr)Ø(pØq)(rt)Û(Øpq)(Ørt)Û(ØpqØr)(Øpqt)2. 求下列命题公式的合取范式。Ø(pq)ÛØ(Øpq)ÛpØqØq(pqr)Û(Øqp)(Øqq)(Øqr)Û(Øqp)(Øqr)(Øpq)(pØq)Û(Øpq)p)(Øpq)Ø

40、q)Û(Øpp)(qp)(ØpØq)(qØq)Û(pq)(ØpØq)Ø(pq)ÛØ(pq)(ØpØq)Û(ØpØq)(pq)Ø(pq)rÛØØ(Øpq)rÛ(Øpq)rÛØpqr3.求下列命题公式的主析取范式,并求命题公式的成真赋值。(pq)(pr)作(pq)(pr)的真值表,如表1.50所示。表1.50pqrpqpr(pq)(pr)0000000

41、01000010000011000100000101011110101111111由真值表可知,原式Û(pØqr)(pqØr)(pqr)(主析取范式)Û5,6,7使得命题公式(pq)(pr)成真的赋值是:101,110,111。Ø(pq)(Øpr)ÛØØ(pq)(Øpr)Û(pq)(Øpr)Û(pqØp)(pqr)ÛpqrÛ(ØpØqr)(ØpqØr)(Øpqr)(pØq

42、16;r)(pØqr)(pqØr)(pqr)(主析取范式)Û1,2,3,4,5,6,7使得命题公式Ø(pq)(Øpr)成真的赋值是:001,010、011,100,101,110,111。(ØpØq)(pØq)作(ØpØq)(pØq)的真值表,如表1.51所示。表1.51pqØpØqØpqpq(pq)(pq)0011100011011110011111100001由真值表可知:原式Û(Øpq)(pØq)(pq) (主析取范式)

43、Û1,2,3使得命题公式(ØpØq)(pØq)成真的赋值是:01,10,11。(Øpq)(pØq)ÛØ(ØØpq)(pØq)ÛØ(pq)(pØq)Û(ØpØq)(pØq)Û(pØqØp)(pØqØq)ÛpØqÛ(ØpØq)(pØq)(pq)(主析取范式)Û0,2,3使得命题公式(Øpq)(

44、pØq)成真的赋值是:00,10,11。(p(qr)(Øp(ØqØr)Û(Øp(qr)(ØØp(ØqØr)Û(Øpq)(Øpr)(pØq)(pØr)Û(Øpqr)(ØpqØr)(Øpqr)(ØpØqr)(pØqr)(pØqØr)(pqØr)(pØqØr)Û(Øpqr)(ØpqØr

45、)(ØpØqr)(pØqr)(pqØr)(pØqØr)Û(ØpØqØr)(pqr)(主析取范式)使得命题公式(p(qr)(Øp(ØqØr)成真的赋值是:000,111。4. 求下列命题公式的主合取范式,并求命题公式的成假赋值。(pq)rÛ(Øpq)rÛ(Øpqr)(ØpqØr)(Øpr)(pr)Û(Øpqr)(ØpqØr)(Øpqr)(Ø

46、pØqr)(pqr)(pØqr)Û(Øpqr)(ØpqØr)(ØpØqr)(pqr)(pØqr)Û0,2,4,5,6使得命题公式(pq)r成假的赋值是:000,010,100,101,110。Ø(pq)(pØq)作Ø(pq)(pØq)的真值表,如表1.52所示。表1.52pqpqØ(pq)ØqpØqØ(pq)(pØq)0010110011001010011111110001由真值表可知:原式Û(p

47、q)(pØq)Û0,1使得命题公式Ø(pq)(pØq)成假的赋值是:00,01。Ø(pq)(Øpr)ÛØØ(pq)(Øpr)Û(pq)(Øpr)Û(pqØp)(pqr)ÛpqrÛ0使得命题公式Ø(pq)(Øpr)成假的赋值是:000。Ø(pØq)ØpÛØ(ØpØq)ØpÛpqØpÛFÛ0,1,2,3

48、使得命题公式Ø(pØq)Øp成假的赋值是:00,01,10,11。(p(qr)rÛØpqrrÛØpqrÛ4使得命题公式(p(qr)r成假的赋值是:100。5. 求下列命题公式的主析取范式,再用主析取范式求出主合取范式。(pq)(qr)Û(Øpq)(Øqr)Û(Øpq)Øq)(Øpq)r)Û(ØpØq)(Øpr)(qr)Û(ØpØqr)(ØpØqØr

49、)(ØpØqr)(Øpqr)(Øpqr)(pqr)Û(ØpØqr)(ØpØqØr)(Øpqr)(pqr)(主析取范式)Û0,1,3,7Û2,4,5,6Û(pØqr)(Øpqr)(ØpqØr)(ØpØqr)(主合取范式)Ø(ØpØq)rÛ(pq)rÛ(pqr)(pqØr)(pr)(Øpr)Û(pqr)(pqØr

50、)(pqr)(pØqr)(Øpqr)(ØpØqr)Û(pqr)(pqØr)(pØqr)(Øpqr)(ØpØqr)(主析取范式)Û1,3,5,6,7Û0,2,4Û(pqr)(pØqr)(Øpqr)(主合取范式)6. 求下列命题公式的主合取范式,再用主合取范式求出主析取范式。(pq)rÛ(pq)(qp)rÛ(Øpq)(Øqp)rÛ(Øpqr)(ØpqØr)(Øq

51、pr)(ØqpØr)(Øpr)(pr)Û(Øpqr)(ØpqØr)(pØqr)(pØqØr)(Øpqr)(ØpØqr)(pqr)(pØqr)Û(Øpqr)(ØpqØr)(pØqr)(pØqØr)(ØpØqr)(pqr)(主合取范式)Û0,2,3,4,5,6Û1,7Û(ØpØqr)(pqr)(主析取范式)(pq)q

52、19;Ø(pq)qÛØpØqqÛT(无主合取范式)Û0,1,2,3Û(ØpØq)(Øpq)(pØq)(pq)7.用主析取范式判断下列命题公式是否等价。p(qr)和q(pr)p(qr)ÛØp(Øqr)ÛØpØqrÛ(ØpØqØr)(ØpØqr)(ØpqØr)(Øpqr)(pØqØr)(pØqr)(pqr)(主析

53、取范式)Û0,1,2,3,4,5,7q(pr)ÛØq(Øpr)ÛØpØqrÛ(ØpØqØr)(ØpØqr)(ØpqØr)(Øpqr)(pØqØr)(pØqr)(pqr)(主析取范式)Û0,1,2,3,4,5,7因为p(qr)与q(pr)的主析取范式相同,所以p(qr)Ûq(pr)。(pq)(pr)和p(qp)(pq)(pr)Û(Øpq)(Øpr)Û

54、Øp(qr)Û(Øpq)(ØpØq)(Øpqr)(pqr)Û(Øpqr)(ØpqØr)(ØpØqr)(ØpØqØr)(Øpqr)(pqr)Û(ØpqØr)(ØpØqr)(ØpØqØr)(Øpqr)(pqr)(主析取范式)Û0,1,2,3,7p(qp)ÛØp(qp)Û(Øpq)(Øpp)&#

55、219;ØpqÛ(Øpq)(ØpØq)(Øpq)(pq)Û(Øpq)(ØpØq)(pq) (主析取范式)Û0,1,3因为(pq)(pr)与p(qp)的主析取范式不相同,所以(pq)(pr)与p(qp)不等价。8. 用主合取范式判断下列命题公式是否等价。(pq)r和p(qr)(pq)rÛØ(Øpq)rÛ(pØq)rÛ(pr)(Øqr)Û(pØqr)(pqr)(ØpØqr)

56、9;0,2,6p(qr)ÛØp(Øqr)ÛØpØqrÛ6因为(pq)r与p(qr)的主合取范式不相同,所以(pq)r与p(qr)不等价。(pØq)(Øpq)和(pq)Ø(pq)(pØq)(Øpq)Û1,2Û0,3Û(pq)(ØpØq)(pq)Ø(pq)Û(pq)(ØpØq)Û0,3因为(pØq)(Øpq)和(pq)Ø(pq)的主合取范式相同,所以(

57、pØq)(Øpq)Û (pq)Ø(pq)。习题1.61.将下列命题公式用只含Ø,的等价式表示。(pØq)rÛØ(ØpØq)(qp)rÛ(pq)(ØpØq)rØ(p(q(qr)ÛØ(Øp(qqr)(ØqØ(qr)ÛpØ(qr)(q(qr)Ûp(ØqØr)qÛpqØrp(pq)Ûp(Øpq)Û(pØ(&

58、#216;pq)(Øp(Øpq)Û(pØq)ØpÛØpØq(pq)rÛ(pq)(ØpØq)rÛ(pq)(ØpØq)r)(Ø(pq)(ØpØq)Ør)Û(pqr)(ØpØqr)(ØpØq)(pq)Ør)Û(pqr)(ØpØqr)(ØpØq)(pq)Ør)(pq)(rt)Û(Øpq)

59、(Øqp)(Ørt)Û(Øpq)(Øqp)Ø(Ørt)(Ø(Øpq)(Øqp)(Ørt)Û(Øpq)(Øqp)(rØt)(pØq)(qØp)(Ørt)2. 将下列命题公式用只含Ø,的等价式表示。(pq)ØpÛØ(ØpØq)p)pqÛ(Øpq)(Øqp)ÛØ(Ø(Øpq)Ø(Øqp)(pq)rÛØ(pq)rÛØ(Ø(ØpØq)Ør)pqÛØ(pq)ÛØ(pq)Ø(ØqØp) ÛØ(Ø(ØpØq)Ø(pq)(pq)rÛ(Øpq)(Øqp)rÛØ(Ø(Øpq)Ø(Øqp)Ør)3. 将下列命题公式用只含Ø

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论