比较线性模型和Probit模型Logit模型_第1页
比较线性模型和Probit模型Logit模型_第2页
比较线性模型和Probit模型Logit模型_第3页
比较线性模型和Probit模型Logit模型_第4页
比较线性模型和Probit模型Logit模型_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、研究生考试录取相关因素的实验报告一, 研究目的通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。二, 模型设定表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表obsYSCOREobsYSCOREobsYSCORE114013403326702752140135033268027331392360332690273413873703317002725138438033071026761379390328720266713784003287302638137841

2、032874026191376420321750260101371430321760256111362440318770252121362450318780252131361460316790245140359470308800243150358480308810242161356490304820241170356500303830239180355510303840235190354520299850232200354530297860228210353540294870219220350550293880219230349560293890214240349570292900210250

3、348580291910204260347590291920198270347600287930189280344610286940188290339620286950182300338630282960166310338640282970123320336650282330334660278定义变量SCORE :考生考试分数;Y :考生录取为1,未录取为0。 上图为样本观测值。1 线性概率模型根据上面资料建立模型用Eviews得到回归结果如图:Dependent Variable: YMethod: Least SquaresDate: 12/10/10 Time: 20:38Sample:

4、 1 97Included observations: 97VariableCoefficientStd. Errort-StatisticProb.  C-0.8474070.159663-5.3074760.0000SCORE0.0032970.0005216.3259700.0000R-squared0.296390    Mean dependent var0.144330Adjusted R-squared0.288983    S.D. dependent var0.353250S.

5、E. of regression0.297866    Akaike info criterion0.436060Sum squared resid8.428818    Schwarz criterion0.489147Log likelihood-19.14890    F-statistic40.01790Durbin-Watson stat0.359992    Prob(F-statistic)0.000000参数估计结果为:

6、-0.847407+0.003297 Se=(0.159663)( 0.000521) t=(-5.307476) (6.325970) p=(0.0000) (0.0000) 预测正确率:Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.294780Mean Absolute Error     0.233437Mean Absolute Percentage Error8.689503Theil Inequa

7、lity Coefficient 0.475786     Bias Proportion        0.000000     Variance Proportion 0.294987     Covariance Proportion 0.7050132.Logit模型Dependent Variable: YMethod: ML

8、- Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariableCoefficientStd. Errorz-StatisticProb.  C-243.7362125.5564-1.9412480.0522SCORE0.6794410.3

9、504921.9385360.0526Mean dependent var0.144330    S.D. dependent var0.353250S.E. of regression0.115440    Akaike info criterion0.123553Sum squared resid1.266017    Schwarz criterion0.176640Log likelihood-3.992330    Hanna

10、n-Quinn criter.0.145019Restr. log likelihood-40.03639    Avg. log likelihood-0.041158LR statistic (1 df)72.08812    McFadden R-squared0.900282Probability(LR stat)0.000000Obs with Dep=083     Total obs97Obs with Dep=114得Logit模型估计结果如下 pi

11、 = F(yi) = 拐点坐标 (358.7, 0.5)其中Y=-243.7362+0.6794X预测正确率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.114244Mean Absolute Error     0.025502Mean Absolute Percentage Error1.275122Theil Inequality Coefficient 0.153748  

12、;   Bias Proportion        0.000000     Variance Proportion 0.025338     Covariance Proportion 0.9746623.Probit模型Dependent Variable: YMethod: ML - Binary Probit (Quadratic hill climbing

13、)Date: 12/10/10 Time: 21:40Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariableCoefficientStd. Errorz-StatisticProb.  C-144.456070.19809-2.0578330.0396SCORE0.4028680.1961862.0535040.0400Mean dependent var0.

14、144330    S.D. dependent var0.353250S.E. of regression0.116277    Akaike info criterion0.122406Sum squared resid1.284441    Schwarz criterion0.175493Log likelihood-3.936702    Hannan-Quinn criter.0.143872Restr. log likel

15、ihood-40.03639    Avg. log likelihood-0.040585LR statistic (1 df)72.19938    McFadden R-squared0.901672Probability(LR stat)0.000000Obs with Dep=083     Total obs97Obs with Dep=114Probit模型最终估计结果是 pi = F(yi) = F (-144.456 + 0.4029 xi) 拐点

16、坐标 (358.5, 0.5)预测正确率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.115072Mean Absolute Error     0.025387Mean Absolute Percentage Error1.216791Theil Inequality Coefficient 0.154476     Bias Proportion        0.000084     Variance Proportion 0.020837     Covariance Proportion 0.979080预测正确率结论:线性概率模型RMSE=0.294780 MAE=0.233437 MAPE=8.689503 Logit模型 RMSE=0.114244

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论