




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、老师姓名欧阳亚梅学生姓名谢倩怡教材版本 人教版学科名称 数学年级 高一上课时间月 日 : : 课题名称 1.1 集合 集合的含义与表示 集合间的基本关系 1.1.3 集合的基本运算教学目标 1.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号 教学重点 1. 集合的基本概念与表示方法.教学过程 一、导入新课 军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合.二、提出问题
2、请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?世界上最高的山能不能构成一个集合?世界上的高山能不能构成一个集合?问题说明集合中的元素具有什么性质?由实数1、2、3、1组成的集合有几个元素?
3、问题说明集合中的元素具有什么性质?由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:能.能.我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.能,是珠穆朗玛峰.不能.确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.3个.互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异
4、性.集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.结论:1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,2、元素与集合的关系a是集合A的元素,就说a属于集合A , 记作 aA ,a不是集合A的元素,就说a不属于集合A, 记作 aÏA 3、集合的中元素的三个特性: (1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2.)元素的互异性:任何一个给定的集合中,任
5、何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合(3).元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。集合元素的三个特性使集合本身具有了确定性和整体性。 常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);N*或N+:正整数集(非负整数集N内排除0的集合);Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合);R:实数集(全体实数的集合).三、 例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数 B.高中数学的所有难
6、题C.被3除余2的所有整数 D.函数y=图象上所有的点分析:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A、C、D中的元素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B变式训练11.下列条件能形成集合的是( D )A.充分小的负数全体 B.爱好足球的人C.中国的富翁 D.某公司的全体员工例题2下列结论中,不正确的是( )A.若aN,则-aN B.若aZ,则a2ZC.若aQ,则aQ D.若aR,则分析:(1)元素与集合的关系及其符号表示;(2)特殊集合的表示方法;答
7、案:A变式训练2判断下面说法是否正确、正确的在( )内填“”,错误的填“×”(1)所有在N中的元素都在N*中( × )(2)所有在N中的元素都在中( )(3)所有不在N*中的数都不在Z中( ×)(4)所有不在Q中的实数都在R中( )(5)由既在R中又在N*中的数组成的集合中一定包含数0( ×)(6)不在N中的数不能使方程4x8成立( )四、课堂小结1、集合的概念2、集合元素的三个特征,其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、
8、常见数集的专用符号. 填空:1 、集合:一般地,把一些能够 对象看成一个整体,就说这个整体是由这些对象的全体构成的 (或 )。构成集合的每个对象叫做这个集合的 (或 )。2、集合与元素的表示:集合通常用 来表示,它们的元素通常用 来表示。3、元素与集合的关系:如果a是集合A的元素,就说 ,记作 ,读作 。如果a不是集合A的元素,就说 ,记作 ,读作 。4.常用的数集及其记号:(1)自然数集: ,记作 。(2)正整数集: ,记作 。(3)整数集: ,记作 。(4)有理数集: ,记作 。(5)实数集: ,记作 。 例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数 B.高中数学的所有难
9、题C.被3除余2的所有整数 D.函数y=图象上所有的点变式训练11.下列条件能形成集合的是( )A.充分小的负数全体 B.爱好足球的人C.中国的富翁 D.某公司的全体员工例题2下列结论中,不正确的是( )A.若aN,则-aN B.若aZ,则a2ZC.若aQ,则aQ D.若aR,则变式训练2判断下面说法是否正确、正确的在( )内填“”,错误的填“×”(1)所有在N中的元素都在N*中( )(2)所有在N中的元素都在中( )(3)所有不在N*中的数都不在Z中( )(4)所有不在Q中的实数都在R中( )(5)由既在R中又在N*中的数组成的集合中一定包含数0( )(6)不在N中的数不能使方程4
10、x8成立( )5、 课堂小结三、当堂检测1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。你能否确定,你所在班级中,最高的3位同学构成的集合?2、 (1) -3 N; (2)3.14 Q; (3) Q; (4)0 ; (5) Q; (6) R; (7)1 N+; (8) R。 课后练习与提高1.下列对象能否组成集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足3x-2>x+3的全体实数;(4)所有直角三角形;(5)美国NBA的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差
11、的队员;(9)参加2008年奥运会的中国代表团成员.2.(口答)说出下面集合中的元素:(1)大于3小于11的偶数;(2)平方等于1的数;(3)15的正约数.3.用符号或填空:(1)1_N,0_N,-3_N,0.5_N,_N;(2)1_Z,0_Z,-3_Z,0.5_Z,_Z;(3)1_Q,0_Q,-3_Q,0.5_Q,_Q;(4)1_R,0_R,-3_R,0.5_R,_R.4.判断正误:(1)所有属于N的元素都属于N*. ( )(2)所有属于N的元素都属于Z. ( )(3)所有不属于N*的数都不属于Z. ( )(4)所有不属于Q的实数都属于R. ( )(5)不属于N的数不能使方程4x=8成立.
12、( ) 例1. 用例举法表示集合 答案: 例2.下列命题:若,则; 表示只有一个元素的集合; 方程的解的集合可表示成;其中正确的命题个数是( )答案:(2) 例3已知,且,求实数的值。 解:或。或。但时,与集合中元素的互异性矛盾, 随堂练习 1已知集合中的三个元素可成为的三边长, 那么一定不是 答案:D_ 2设都是非零实数,可能取的值组成的集合是3已知,且,则的值为4对于集合,若,则,那么的值为_或_5给出下面三个关系式:其中正确的个数是_6集合,则集合中元素的个数是 7设集合,则下列关系是成立的是_ 归纳整理,整体认识在师生互动中,让学生了解或体会下例问题: 1本节课我们学习过哪些知识内容? 2你认为学习集合有什么意义? 3选择集合的表示法时应注意些什么?承上启下,留下悬念 1课后书面作业:第5页1,2题。2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示? 集合间的基本关系 复习回顾 1.元素的定义2、集合的定义3、集合中元素的性质4、集合的表示方法5、集合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小升初数学试卷(SAT解题技巧与写作)
- 2025年高考数学模拟检测卷(概率与统计综合)-名校真题解析试题卷
- 2025年资产评估师职业资格考试模拟试题:实务(一)机器设备评估实务案例精析
- 地理灾害防治案例分析:2025年初中学业水平考试试题集
- 广西北海市2025届高三上学期第一次模拟考试(英语)
- 口腔牙髓治疗教学
- 2025年校园施工安全警示规范解读施工安全法规实施指南
- 髋关节护理常识
- 高中数学人教B版 (2019)选择性必修 第三册第五章 数列本章综合与测试当堂检测题
- 传染病防治与急救技能培训
- 湖北省武汉市2025届高三年级五月模拟训练试题数学试题及答案(武汉五调)
- 医师挂证免责协议书
- 济南民政离婚协议书
- 新课标(水平三)体育与健康《篮球》大单元教学计划及配套教案(18课时)
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- BF——2008——0603 北京市房屋租赁合同
- 张紧轮支架加工工艺及夹具设计说明书
- 中国十大名茶(课堂PPT)
- 2018年黑龙江省牡丹江市中考语文试题及答案
- 篇一:整改报告(范本)
- 危险源辨识、风险评价表及重要危险源清单(包括程序文件)
评论
0/150
提交评论