时间序列分析股票价格分析_第1页
时间序列分析股票价格分析_第2页
时间序列分析股票价格分析_第3页
时间序列分析股票价格分析_第4页
时间序列分析股票价格分析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对“中国石化”股票价格的预测吴武陵 (湖南科技学院 数学与计算科学系 湖南永州 425100)摘要:主要采用ARMA 模型对“中国石化”股票的发展规律进行了研究. 通过对“中国石化”股票2006年11月到12月两个月中30天收盘价格进行实证分析,建立一个股票价格走势规律的统计预测模型ARIMA(1 ,1 ,0) .最后,利用该模型对“中国石化”股票价格走势进行了预测。关键词:中国石化股票价格;时间序列分析;ARIMA模型;SPSS11.5系统Prediction on the Stock Price of SinopecWu Wu ling(Depertment of Mathsmatic a

2、nd Computational Science, Hunan University ofScience and Engineering. Yongzhou,425100, Hunan)Abstract:In this paper, we adopt primarily the ARIMA model and study the developed law of the stock of Sinopec. By analysising the price of 30 days of Sinopec that occured from November to December in 2006,

3、we establish a statistical prediction model that reflects the law of stock price, which we call ARIMA(1,1,0). Finally, by the model , we predict the trend of the stock price of Sinopec.Key words: the stock price of Sinopec , Time series analysis, ARIMA model, SPSS 11.5 system 一引言股票市场是一个复杂的非线形系统,市场受到

4、来自政治,社会,经济,心理等方面的影响,因而对其运动行为很难建模。但是,正如技术分析所假设的“市场是有趋势可循的,市场价格反映了一切,历史往往会重演”,这也就是说明尽管复杂,但市场还是隐含着某些规律性。股价的历史轨迹形态对未来价格趋势特别是短期趋势有着重要的预测价值。这不仅得到市场上许多技术分析者的支持而且一些研究结果也证实了这一点。然而基于技术分析的投资者,特别是一些经验不足的投资者在利用形态理论进行投资操作时结果却往往不尽人意。原因主要在于:1传统形态分析理论往往比较“机械”,所有股票套用的是一些相同的形态模式,而事实上,各种股票都有其自身运动规律,对价格趋势具有预测作用的形态表现是不尽相

5、同的,2识别股价序列形态往往有一定困难,常常出现因人而异的现象。不同人对形态的识别有不同的看法,因此交易失败的原因即使是理论的缺陷,投资者也往往归咎与自身对形态的误判,从而可能重蹈覆辙。3许多形态在初期难以识别,而一旦形态分明时,往往已经错过最佳交易时机,大大影响投资效果。因此,具有自动识别股价形态,并及时发出交易信息的自动交易系统已被许多投资机构采用。但是现有系统往往基于固定的形态模式,而较少考虑投资者在长期的投资实践过程中获得的经验和直觉对交易规则发现的作用,事实上,市场上很多投资分析者经过在股市浪潮中的搏击经验,积累了不少体会和发现,对股价形态往往有着自己独特的见解和偏好。但遗憾的是,并

6、没有系统能将其经验提升为规则。事实上以投资者经验为指导,个性化地挖掘出股市中隐藏的,具有规律性,令人感兴趣的规则是很有意义的。股票价格的形成机制是一个很有吸引力的研究课题。从市场方面来看它受一般投资人买卖股票决策的影响,从上市公司方面来看,公司发展变化的不确定性也会对股票几个产生相当大的作用,再有政府行为(如关于股票市场政策的变化)和投资机构违规炒作都会对股市形成巨大的冲击,本文的目的在于试图找到一种较为理想的模型可以以一定的精确度来描叙现实股票市场价格波动的现象,并得到一些有意义的结论。笔者以下分析ARIMA模型,然后对它们的可行性进行实证分析。二模型简介通常,在某些季节性时间序列中不仅含有

7、季节性成分,还有非季节性成分. 若单一用季节性或非季节性ARIMA 模型进行拟合和预测,本文采用ARIMA ( p , d , q)模型(1) ARIMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型:Xt=Xt-1+t 常记作AR(1)。

8、其中Xt为零均值(即已中心化处理)平稳序列,为Xt对Xt1的依赖程度,t为随机扰动项序列(外部冲击)。如果Xt 与过去时期直到Xt-p 的取值相关,则需要使用包含Xt1 ,Xt-p在内的p阶自回归模型来加以刻画。P阶自回归模型的一般形式为: Xt=1 Xt1+2 Xt2+p Xtp+t 为了简便运算和行文方便,我们引入滞后算子来简记模型。设B为滞后算子,即BXt=Xt-1, 则B(Bk-1Xt)=BkXt=Xt-k B(C)=C(C为常数)。利用这些记号,上式可化为:Xt=1BXt+2B2Xt+3B3Xt+pBpXt+t从而有:(1-1B-2B2-pBp)Xt=t记算子多项式(B)(1-1B-

9、2B2-pBP),则模型可以表示成(B)Xt=t 例如,二阶自回归模型Xt=0.7Xt-1+0.3Xt-2+0.3Xt-3+t2)Xt=t滑动平均模型(MA) 有时,序列Xt的记忆是关于过去外部冲击值的记忆,在这种情况下,Xt可以表示成过去冲击值和现在冲击值的线性组合,即Xt=t-1t-1-2t-2-qt-q 此模型常称为序列Xt的滑动平均模型,记为MA(q), 其中q为滑动平均的阶数,1,2q为参滑动平均的权数。相应的序列Xt称为滑动平均序列。使用滞后算子记号,()可写成 Xt=(1-1B-2B2- qBq)qt=(B)t 自回归滑动平均模型如果序列Xt的当前值不仅与自身的过去值有关,而且还

10、与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为:Xt=1Xt-1+2Xt-2+pXt-p+t-1t-1-2t-2-qt-q 简记为ARMA(p, q)。利用滞后算子,此模型可写为(B)Xt=(B)t (2)时间序列模型的平稳性、可逆性和传递性首先介绍两个概念。序列的传递形式:设Yt为随机序列,t为白噪声,若Yt可表示为:Yt=t+G1t-1+G2t-2+Gkt-k+=G(B) t 且,则称Yt具有传递形式,此时Yt是平稳的。系Gk称为格林函数。它描述了系统对过去冲击的动态记忆

11、性强度。序列的逆转形式:若Yt可表示为:t= Yt-1 Yt-1-2 Yt-2-k Yt-k-=(B) Yt且,则称Yt具有逆转形式(或可逆形式)。 MA模型.MA模型本身就是传递形式。.MA(q)总是平稳的(由上一章的例),MA()在系数级数绝对收敛的条件下平稳。.MA(q)模型的可逆性条件。先以MA(1)(Yt=t-1t-1)为例进行分析。MA(1)的可逆性条件为:。如果引入滞后算子表示MA(1),则Yt=(1-1B)t,可逆条件等价于(B)=1-1B=0的根全在单位圆外。对于一般的MA(q)模型,利用滞后算子表示有:Yt=(1-1B-2B2- qBq)t = (B)t其可逆的充要条件是:

12、(B) =0的根全在单位圆外(证明见Box-Jenkins,P79)。在可逆的情况下,服从MA(q)模型的序列可以表示成无穷阶的AR模型:-1(B)Yt=tMA(q)的可逆域:使(B) =0的根全在单位圆之外的系数向量(1,2,q)所形成的集合。例:求MA(2)的可逆域。解:由,其特征方程为:该方程的两个根为:由二次方程根与系数的关系,有当MA(2)平稳时,根的模都必须大于1,因此必有:由根与系数的关系,可以推出如下式子:由于是实数,必同为实数或共轭复数。又因为,因此故反之,如果,且。那么从可以推出至少有一个,例如,假设,则根据可推出,由可以推出,从而。因此,的根在单位圆之外。(平稳域为一三角

13、形)。 AR模型.AR(P)模型本身就是一种逆转形式。平稳性。.先以AR(1)( Yt=1Yt-1+t),进行分析。AR(1)平稳的条件为,它等价于(B)=1-1B=0的根在单位圆外。.在平稳的情况下,AR(1)有传递形式:(1-1B)Yt=t一般地,对于AR(P)模型:(B) Yt=t,序列Yt平稳的充要条件是:(B)=0的根全在单位圆外。此时,Yt有传递形式:Yt=-1(B) tAR(P)的平稳域:使(B)=0的根全在单位圆外的AR系数向量(1,2,p,)的全体形成的集合。练习:求AR(1)与AR(2)的平稳域。ARMA(p,q)模型.平稳性与传递形式首先考察ARMA(1,1)的平稳性:

14、Yt1Yt-1=t1t-1 Yt平稳 11 (与AR(1)的平稳域相同) 此结论表明,ARMA(1,1)序列的平稳性仅与自回归系数有关,而与滑动平均系数无关。而且平稳条件与AR(1)的平稳条件相同。在平稳的条件下,Yt有上述形式的传递形式。一般地,服从ARMA(p,q)模型的序列Yt 平稳的充要条件是:(B)=0的根全在单位圆外。在平稳的条件下,Yt有传递形式 Yt=-1(B)(B)t.可逆性对于ARMA(1,1),假定可逆形式为t=(B)Yt=(11B2B2k B k )Yt 代入ARMA(1,1)的滞后算子表示形式,采用类似前面的方法,比较同次冥系数可得 t= Yt(11)Yt-11(11

15、)Yt-21 k-1(11)Yt- k 根据前面的定义(可逆性定义),应有11。因此,ARMA(1,1)可逆的条件是11,它仅与滑动系数有关,而与自回归系数无关。而且可逆条件与MA(1)的可逆条件相同。一般地,服从ARMA(p,q)模型的序列Yt,其具有可逆性的条件是: (B)=0的根全在单位圆外。在可逆的条件下,Yt的逆转形式为 t=-1(B)(B)Yt (3)ARIMA(p,q)模型简介若有平稳零均值随机序列Xt及白噪声序列t2,满足Xt1Xt1pXtpt1t1qtq(1) 引入后移算子B,记(B)11B2B2pBp(B)11B2B2qBq则式(1)又可写为 Xt(B)t(B)(2)若(B

16、)0与(B)0的根都在单位圆外,则上面的模型即为ARMA模型2。它是时间序列法的一般形式,可视为一个单入单出的线性系统。当将ARMA模型用于预报时,t就是残差序列。作为ARIMA的特例,当q0时称为AR(p)(p阶自回归)模型,其特点为:偏自相关函数具有截尾性,自相关函数具有拖尾性;当p0时称为MA(q)(q阶滑动平均)模型,其自相关函数具有截尾性,偏相关函数具有拖尾性;对非平稳序列作d阶差分后再拟合ARIMA模型则称为ARIMA(p,d,q)模型。三、时间序列的相关分析(1)、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步

17、地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。1、 时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: 若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; 若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。2、 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:若时间序列的自相关函数在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;若时间序列的自相关函数更多地落在置信区间外面,则该时

18、间序列就不具有平稳性。3、 ARMA模型的自相关分析 AR(p)模型的偏自相关函数是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。(2)、ARIMA(p,q)的自相关函数设ARIMA(p,q)的形式为: Yt=1Yt-1+2Yt-2+pYt-p+t1t-1qt-q则Yt的s阶自协方差函数为:s =1s-1+2s-2+ps-p+E(Ytt+S) 1E(Ytt+S-1) qE(Ytt+S-q)当0sq时,t+S,t+S-1, ,t+S-q中

19、有一部分位于t时刻以前(t+ s-it s-i0),Yt与这一部分外部冲击有关,从而s除了受自回归系数的影响外,还受一部分滑动平均系数的影响。当sq时,s-q0,t+s-qt,从而t+S,t+S-1, ,t+S-q全在t时刻以后,由于Yt与未来的外部冲击不相关,因此s中后面的项全为零。 s=1s-1+2s-2+ps-p它只同自回归系数有关。两边同除0,得s=1s-1+2s-2+ps-p (sq)即ARMA(p,q)的自相关函数(ACF)在sq时,与AR(p)的自相关函数所满足的线性差分方程完全相同。借用前面关于AR(p)的自相关函数特征的讨论可知,ARMA(p,q)的自相关函数(ACF)在q以

20、后随s的增长按指数衰减或以正弦振荡衰减,即仍体现出拖尾特征。(3)偏自相关函数 从前面的自相关函数的讨论中可看出,自相关函数的截尾性是MA(q)的独有特征,但自相关函数的拖尾性却是AR(p)与ARMA(p,q)共有的特征,尽管ARMA(p,q)的自相关函数在q阶后开始按指数衰减或以正弦振荡衰减,但这还不足于区别AR(p)与ARMA(p,q),因为在实际应用中很难区分是否是从q阶开始衰减的。因此,还需寻找序列的其他统计特征。这就是偏自相关函数的特征。设Yt是一随机序列,所谓Yt的s阶偏自相关系数,是指扣出中间s-1个项的影响之后,Yt与Yt+s的相关系数。为了考察偏自相关函数的特性,我们分析如下

21、:设Yt是一零均值平稳序列,我们设想用Yt-1, Yt-2,Yt- s的s阶自回归模型去拟和Yt,即建立如下模型:Yt=s1Yt-1+s2Yt-2+ssYt-s+ et其中et为误差项。估计模型的常用方法是最小二乘法,即选择s1,s2,ss使模型的残差方差Q=E(Yt-Sj Yt- j )2=Eet2达到最小。根据极值条件应有:QSj =0 (j=1,2,s) 据此,可推出s1,s2,ss所满足的方程为其中k (k=1,s)为Yt的k阶自相关系数。此方程组称为Yule-Walker方程。可以证明,SS是在给定Yt-1, Yt-2,Yt-s+1的条件,Yt和Yt- s之间的条件相关系数,即偏相关

22、系数。SS就为Yt的偏相关函数。要考察Yt服从自回归过程的情况下,偏自相关函数的特征,就需要由Yule-Walker方程解出SS的表达式,然后进行分析。由于求解过程比较复杂。在此我们通过另外一条途径考察ss的特性。假定Yt的真实过程为AR(p)(p阶自回归),我们用s阶自回归过程去逼近,则模型的残差方差为Q=E(Yt-Sj Yt- j )2 =E((j -Sj) Yt-j+t-Sj Yt- j )2 =E((j -Sj) Yt-j-Sj Yt- j )2+ 2 2则当且仅当 Sj 1jpSj= 0 p<js时,Q达到最小值。上式表明,当sp时,SS=0,即pp=p是AR(p)模型偏自相关

23、函数SS,s1中不为零的最后一项。这种偏自相关p步截尾是 AR(p)的典型特征。四基于SPSS 系统的实证分析1数据分析下面以2006年11月-2006年12月期间,中国石化股票每日收盘价价格为原始数据(来源于大智慧证券信息港)进行分析。将中国石化股票2006年两个月(2006年11月-2006年12月)中30天的收盘价价格数据做时间序列图如图1. (图1)从图1 中可以看到中国石化股票价格具有如下基本趋势:第一、随着时间的增长和经济水平的提高和国际形势的变化, 中国石化股票价格有波动现象, 但总体呈现不断增长的趋势.第二、在该序列中,表现出10月份价格走势持平,在11月中旬价格突增,之后进另

24、一个持平状态。从而认为该序列是非平稳的,对其进行一阶差分后,资料图如图2. (图2)从图2 可以看出增长趋势不明显,周期性也明显被消除掉. 因此,可以认为经一阶差分后,新序列是比较平稳的. 但是均值线不在零点,也即新序列是非零均值的. 从而,需将其零均值化.但本文运用SPSS 系统,将其均值作为参数来估计2 模型的识别与定阶作新平稳序列的自相关函数图(图3) 、偏自相关函数图(图4) . (图3) (图4)我们采用最佳准则函数定阶法中的Akaike 最小信息准则(AIC:Akaike Informaition Criterion) 对模型的阶数进行判定.当取(p,d,q)=(1,1,0)时得到

25、:AIC -2.0099762SBC .72461547 B SEB T-RATIO APPROX. PROB.AR1 -.02912807 .19236219 -.1514231 .88076772CONSTANT .04974251 .04078371 1.2196661 .23313892当取(p,d,q)=(0,1,1)时:AIC -2.007925SBC .72666667 B SEB T-RATIO APPROX. PROB.MA1 .02662298 .19245248 .1383353 .89100197CONSTANT .04972991 .04085444 1.217246

26、0 .23404318当取(p,d,q)=(1,1,1)时:AIC -.1374548SBC 3.9644327 B SEB T-RATIO APPROX. PROB.AR1 -.88691808 .49471714 -1.7927781 .08465182MA1 -.93817653 .45229761 -2.0742461 .04809590CONSTANT .04870359 .04363525 1.1161525 .27456651经比较,在收敛标准为(最大值:10 ;参数变化:0. 001 %;平方和变化:0.001 %) 的情况下,取( p , d ,q) = (1,1 ,0)时,

27、 A IC 值达到最小,为AIC -2.0099762SBC 0.72461547 B SEB T-RATIO APPROX. PROB.AR1 -.02912807 0.19236219 -.1514231 .88076772CONSTANT 0.04974251 0.04078371 1.2196661 .23313892因此,我们得到p=1,d=1,q=0.得到ARIMA(1,1,0)模型为:(1-1B)Xt=at+C其中:1=-0.0291 C=0.0497 B:后移算子 at:残差Xt:中国石化股票价格收盘价格序列3预测我们利用上述模型对2006年12月中国石化股票价格. 以2006

28、年11 月份为原点向作预测. 预测值序列图如图5.实际值 10.02预测值 9.49相对误差 5.5%实际值 9.93预测值 10.13相对误差 2.0%实际值 10.18预测值 10.44相对误差 2.5%实际值 11.20预测值 10.75相对误差 4.1%实际值 11.01预测值 11.22相对误差 1.9% (图5) 由图5 可见,2007 年1月预测相对误差均在10 %以内. 因此,可以说模型的效果是不错的. 五结论ARIMA模型具有更加广泛的适用范围;在现实的经济生活中具有明显趋势的情况非常普遍,因此模型是对这类数据进行分析、预测的较好选择. 本文基于SPSS 系统所建立的ARIMA(1,1 ,0)较好地反映了中国石化股票价格的发展规律,对中国石

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论