下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、无利用三角形全等解决实际问题(一)利用三角形全等解决实际问题(一)测量距离测量距离执教:上海市清流中学 孙静贤一、教学目标一、教学目标1、知识与技能、知识与技能(1) 进一步巩固和理解全等三角形的性质与判定。(2) 能利用三角形全等解决实际问题,体会数学与实际生活的联系。2、过程能力与方法、过程能力与方法(1) 在解决实际问题的过程中, 或与同伴交流的过程中发展有条理地思考与表达的能力。(2) 通过引导学生参与知识的探求过程,培养学生的创新意识和合作能力,激发学生学习的积极性和自信心。3、态度与价值观、态度与价值观(1) 通过生动、有趣、现实的例子来激发学生的学习兴趣,进而培养数学学习兴趣。(
2、2) 通过对问题的探索、思考、讨论,培养学生的探索精神与科学态度。(3) 通过课内的活动,让学生体会数学来源于生活,又服务于生活。二、教学重点二、教学重点与与教学难点教学难点1、教学重点:利用三角形全等来测量距离。2、教学难点:如何把实际问题转化成数学问题(即数学建模) 。三、教学过程三、教学过程教学环节教学内容教师活动学生活动复习复习全等三角形的性质及判定条件。请学生回答,并板书。思考后, 举手回答问题。创设情景引入新课情境一情境一在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉这个碉堡,需要知道碉堡与我军阵地距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法,他面
3、向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部,然后,他转过一个角度,保持刚才的姿势,这时视线落在了自显示并讲述此故事后, 提出如下问题:(1)按这个战士的方法,找出教室中与你距离相等的两个点,并通过测量加以验证。1、 对 这 个 战 士的方法进行实践验证。无教学环节教学内容教师活动学生活动创设情景引入新课己所在岸的某一点上,接着他用步测的办法量出自己与那个点的距离,这个距离就是他民碉堡间的距离。情境二情境二课间,小明和小聪在操场上突然争论起来。他们都说自己比对方长得高,这时数学老师走过来,笑着对他们说:“你们不用争了,其实你们一样高,瞧瞧地上,你俩的影子一样长!”,你知道数
4、学老师为什么能从他们的影长相等就断定它们的身高相同?你能运用全等三角形的有关知识说明一下其中的道理吗?(假定太阳光线是平行的)(2)你能理解其中的道理吗?(3)解释战士采用的方法的数学道理。(4)引导学生用全等的方法解释战士所采用的方法的数学依据。(5)2、 学生分组讨论,解释其中的道理。分组讨论探索研究想一想如图,A、B 两点分别位于一个池塘的两端, 小明想用绳子测量A、B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意,先在地上取一个可以直接到达A点和B点的C点, 连接 AC 并延长到 D, 使 CD=AC,连接 BC 并延长到 E,使 CE=BC,连接 DE,并测量出它的长度,DE
5、 的长度就是 A、B 间的距离。提出问题 1 和问题2 并鼓励学生积极探索、讨论,找出解决问题的方案.并根据学生的讨论情况作一定的提示.1、学生先分组讨论,通过合作、探究交流后, 小组代表发言, 用自己语言说明道理.2、 在教师引导下,积极探索解决问题1和问题2的方案, 并能从多个角度进行思考, 尽可能多的给出不同的方法.附:问题 1 参考图:ABCED无教学环节教学内容教师活动学生活动应用与巩固练一练练一练1.如图要测量河两岸相对的两点A、B 的距离,先在 AB 的垂线BF 上取两点 C、D,使 CD=BC,再定出 BF 的垂线 DE, 可以证明EDCABC,得 ED=AB,因此,测得 ED
6、 的长就是 AB 的长 判定EDCABC 的理由是()A、SSSB、ASAC、AASD、SAS2.如图所示小明设计了一种测零件内径 AB 的卡钳,问:在卡钳的设计中, 要使 DC=AB,AO、BO、CO、DO 应满足下列的哪个条件?()A、AO=COB、BO=DOC、AC=BDD、AO=CO 且 BO=DO做一做做一做1如图是挂在墙上的一面大镜子,上面有两点 A、 B。 小丽想知道 A、B 两点之间的距离,但镜子挂得太高,无法直接测量,旁边又没有梯子,只有一根长度比圆的直径稍长点的竹竿和一把卷尺。小丽做了如下操作:在她够的着的圆上找到一点 C , 接下去小丽却忘了应该怎么做?你能帮助她完成吗?
7、学生举牌回答选择题,可分组讨论,教师巡视学生完成情况,并对个别掌握情况较差的学生进行单独辅导。附:练一练 3 参考图:1、 问2、 学 生 举 牌 回答选择题,3、4、 1 较直观,学生独立思考完成;2、对问题 2,学生分小组讨论或独立思考, 设计解决方案, 写出解题过程, 并举手用自己的语言叙述出来.FEBACDABC无教学环节教学内容教师活动学生活动应用与巩固2图,要计算这个花瓶的容积,需要测量其内直径, 由于瓶颈较小,无法直接测量,你能想出一种测量方案吗?3某城市搞亮化工程,如图,在甲楼底部、乙楼顶部分别安装一盏射灯.已知 A 灯恰好照到 B 灯,B灯恰好照到甲楼的顶部,如果两盏灯的光线
8、与水平线的夹角相等,那么能否说甲楼的高度是乙楼的 2 倍?说说你的看法。4把线段 AB 延长到 C 使 BC=AB,这个 C 点如何确定?如果用直尺和圆规画图是很容易找到 C 点的.现在小亮手中只有圆规,没有直尺,并且也不准用其它东西代替直尺,怎样在 AB 延长线方向上找一点 C, 使 BC=AB?小亮忙了半天也没有解决,你能帮他想一想,该怎么作?练一练1、 要测量河岸相对的两点 A、B 的距离,先在 AB 的垂线 BF 上取两点C、D,使 CDBC,再定出 BF 的垂线 DE,使 A、C、E 在一条直线上,测得DE的长就是AB的长, 为什么?学生举牌回答选择题,可分组讨论,教师巡视学生完成情
9、况,并对个别掌握情况较差的学生进行单独辅导。附:练一练 1 参考图:练一练 2 参考图:练一练 3 参考图:5、 问6、 学 生 举 牌 回答选择题,7、8、 1 较直观,学生独立思考完成;2、对问题 2,学生分小组讨论或独立思考, 设计解决方案, 写出解题过程, 并举手用自己的语言叙述出来.FEBACDABC无2、 如图,有一湖的湖岸在 A、B 之间呈一段圆弧状,A、B 间的距离不能直接测得,你能用已学过的知识或方法设计测量方案,求出 A、B 间的距离吗?问题 2如图,要计算一个圆柱形容器的容积, 需要测量其内径. 由于瓶颈较小,无法直接测量,你能想出一种测量方案吗?学生可分组讨论,教师巡视
10、学生完成情况,并对个别掌握情况较差的学生进行单独辅导.附: 问题 2 参考图:BA无课堂小结1、 本节课我们主要利用了三角形全等解决了一些与测量距离有关的实际问题,从中知道了数学与实际生活的联系.我们要善于利用所学的数学知识,运用数学建模的方法解决身边的实际问题.2、本节课,我们在解决问题的过程中,主要采用了哪些方案使不能直接测量的物体间的距离转化为可以测量的. 体会其中的转化思想.引导学生一起完成小结.学生同教师一起完成课堂小结.(着重思考如何把距离的测量问题转化为三角形全等的问题).活动与探究请你找两个被建筑物或河流等隔开的物体,然后想办法测量这两个物体之间的距离.并说明利用什么数学知识或
11、数学原理.学生通过户外活动,进一步增强应用意识与运用数学知识解决实际问题的能力,体会数学与实际生活的密切联系.供学生课后完成四、教学设计说明四、教学设计说明1、教学设计符合学生的认识规律,以生动、有趣、现实的例子,激发学生的兴趣。2、重视对学生能力的培养,培养学生积极思考、互相合作交流、主动发言及动手操作能力。3、学生在教师引导下,自主体验,建构数学模型,实现知识的再创造。4、学生通过小组活动,在合作学习中增强与他人的合作意识。本节内容是全等三角形的应用,即用全等三角形来解决实际问题,旨在培养学生将“实际问题建构成数学模型”的数学思想,这是本节课的难点,使学生建立“对应角相等对应边相等推断两三
12、角形全等找条件”的利用全等三角形解决实际问题的思维框架,是本节的重点,二者联系的关键是将具体问题情境转化为构成几何图形转化成数学问题是本节的授课主线。1、能利用三角形的全等解决实际问题,体会数学与实际生活的联系。无2、能在解决问题的过程中进行有条理的思考和表达。三、教材说明:本节内容是全等三角形的应用,即用全等三角形来解决实际问题,旨在培养学生将“实际问题建构成数学模型”的数学思想,这是本节课的难点,使学生建立“对应角相等对应边相等推断两三角形全等找条件”的利用全等三角形解决实际问题的思维框架,是本节的重点,二者联系的关键是将具体问题情境转化为构成几何图形转化成数学问题是本节的授课主线。四、教
13、学过程:1、知识准备(复习)1) 知识: 判断两个三角形全等必须寻找三个基本元素对应相等 (途径)二角及一对边对应相等二角及平边对应相等二边及夹角对应相等三边对应相等4321之一对应角相等对应边相等两三角形全等2)思维分析等来解决实际问题对应角相等和对应边相利用全等三角形的性质全等之一能判断两个三角形或或或据找出全等的条件问题构筑几何图形将实际问题转化成几何4321SASAASASASSS2、新授实际问题情境一:在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉这个碉堡,需要知道碉堡与我军阵地距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法,他面向碉堡的方向站好,然后
14、调整帽子,使视线通过帽檐正好落在碉堡的底部,然后,他转过一个角度,保无持刚才的姿势,这时视线落在了自己所在岸的某一点上,接着他用步测的办法量出自己与那个点的距离,这个距离就是他民碉堡间的距离。解决过程:1、将实际问题转化成几何图形2、找全等条件,判断两三角形全等RTDEFACBDFABDFEABCDFEABC3、利用全等三角形对应边相等来解决问题。量出 EF 的距离即是 CB 的距离。二、实际问题情境二。如图,A、B 两点分别位于一个池塘的两端,小明想用绳子测量 A、B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意,先在地上取一个可以直接到达 A 点和 B 点的 C 点,连接 AC 并延
15、长到 D,使 CD=AC,连接 BC 并延长到 E,使 CE=BC,连接 DE,并测量出它的长度,DE 的长度就是 A、B 间的距离。仿照问题一,进行解答。过程回到实际问题对应边相等判定三角形全等条件解答问题将实际问题转化成几何转化作图ABCDEFABC无三、课堂巩固练习实际问题情境。1、现在要测量一个口小里大的容器的内径,请同学们自己设计一种工具度量容器的人径,并说明工具的工作原理。2、有一水泊,如图,请你设计一种方案,测出 AB 的距离。(不能用尺子直接测量)利利 用用 三三 角角 形形 全全 等等 测测 量量 距距 离离班级姓名学号情境一情境一在一次战役中,我军阵地与敌军碉堡隔河相望,为
16、了炸掉这个碉堡,需要知道碉堡与我军阵地距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法,他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部,然后,他转过一个角度,保持刚才的姿势,这时视线落在了自己所在岸的某一点上,接着他用步测的办法量出自己与那个点的距离,这个距离就是他民碉堡间的距离。情境二情境二课间,小明和小聪在操场上突然争论起来。他们都说自己比对方长得高,这时数学老师走过来,笑着对他们说:“你们不用争了,其实你们一样高,瞧瞧地上,你俩的影子一样长!”(如图) ,你知道数学老师为什么能从他们的影长相等就断定它们的身高相同?你能运用全等三角形的有关知
17、识说明一下其中的道理吗?(假定太阳光线是平行的)无想一想想一想如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测量 A,B 间的距离,但绳子不够长,你有办法测量 A,B 两点的距离吗?有人这样测量:先在地上取一个可以直接到达 A 点和 B 点的点 C,连接 AC 并延长到 D,使 CD=AC;连接 BC 并延长到 E,使 CE=CB,连接 DE 并测量出它的长度,DE的长度就是 A,B 间的距离。你能说出原因吗?练一练练一练3.如图要测量河两岸相对的两点 A、B 的距离,先在 AB 的垂线 BF 上取两点 C、D, 使 CD=BC, 再定出 BF 的垂线 DE,可以证明EDCABC, 得
18、 ED=AB,因此,测得 ED 的长就是 AB 的长判定EDCABC 的理由是()A、SSSB、ASAC、AASD、SAS4.如图所示小明设计了一种测零件内径 AB 的卡钳,问:在卡钳的设计中, 要使DC=AB,AO、BO、CO、DO 应满足下列的哪个条件?()A、AO=COB、BO=DOC、AC=BDD、AO=CO 且 BO=DO5.如图是挂在墙上的一面大镜子,上面有两点 A、B。小丽想知道 A、B 两点之间的距离,但镜子挂得太高,无法直接测量,旁边又没有梯子,只有一根长度比圆的直径稍长点的竹竿和一把卷尺。小丽做了如下操作:在她够的着的圆上找到一点 C ,接下去小丽却忘了应该怎么做?你能帮助她完成吗?做一做做一做1 如图,要计算这个花瓶的容积,需要测量其内直径
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 岛叶恶性肿瘤的护理
- 大脑皮层发育不全的护理
- 2026年金华永康市第一人民医院招聘人才15人历年真题汇编及答案解析(夺冠)
- 2025江西文化演艺发展集团有限责任公司社会招聘1人备考题库附答案解析
- 2025浦发银行广州分行招聘10人历年真题库附答案解析
- 2026年山东省农村信用社联合社信息科技类应届毕业生校园招聘备考题库(面向中国科学技术大学)附答案
- 浙江国企招聘-2025杭州余杭交通投资集团有限公司劳务派遣员工招聘4人历年真题汇编附答案解析
- 2026重庆市地质矿产勘查开发集团有限公司毕业生校园招聘46人备考题库附答案解析
- 宣汉县公开招聘社区工作者(80人)备考题库带答案解析
- 2026年质量员之土建质量基础知识考试题库及参考答案ab卷
- 2025年郑州水务集团有限公司招聘80人模拟试卷带答案解析
- 2025秋人教版小学美术二年级上册期末过关练习卷及答案 (三套)
- Module2 Unit2 How much cheese did you buy(教学设计)-2024-2025学年外研版(三起)英语五年级上册
- 大单元整合 数与代数(比)六年级数学上册(北师大版)(含解析)
- 净化设备施工方案
- 沙田路灯升降车施工方案
- 卓越绩效管理模式
- 2025 高中环境保护之国际气候谈判课件
- 大模型在企业的应用实践
- 2025秋季《中国石油报》社有限公司高校毕业生招聘考试参考试题及答案解析
- 《工程勘察设计收费标准》(2002年修订本)-完整版-1
评论
0/150
提交评论