




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、排排 列列复习课复习课一、复习引入:一、复习引入:从从n n个不同元素中取出个不同元素中取出m m个元素的一个个元素的一个 从从n n个不同元素中取出个不同元素中取出m m(mnmn)个元素,)个元素,按照一定的顺序排成一列,叫做从按照一定的顺序排成一列,叫做从n n个不同元素个不同元素中取出中取出m m个元素的一个排列个元素的一个排列 从从n个不同的元素中取出个不同的元素中取出m(mn)个元素的个元素的所有排列的个数,叫做从所有排列的个数,叫做从n个不同元素中取出个不同元素中取出m个个元素的元素的排列数排列数. 用符号用符号 表示表示mnA从从n n个不同元素中取出个不同元素中取出m m个元
2、素的个元素的)1()2)(1(mnnnnAmn!()!mnnAnm(n,mN*,mn)二、例题讲解:二、例题讲解:例例1 1 某年全国足球甲级(某年全国足球甲级(A组)联赛共有组)联赛共有14个个队参加,每队都要与其余各队在主、客场分别队参加,每队都要与其余各队在主、客场分别比赛一次,共进行多少场比赛?比赛一次,共进行多少场比赛?例例2.2.有有5 5本不同的书,从中选本不同的书,从中选3 3本送给本送给3 3名同学,名同学,每人每人1 1本,共有多少种不同的送法?本,共有多少种不同的送法?三、练习:三、练习:1、20位同学互通一封信,那么通信次数是多位同学互通一封信,那么通信次数是多少?少?
3、2、由数字、由数字1、2、3、4、5、6可以组成多少个可以组成多少个没有重复数字的六位整数?没有重复数字的六位整数?220A66A123456)(720 个)(380 次3、由、由1、2、3、4、5这这5个数字组成无重复数字个数字组成无重复数字的五位数,其中奇数有多少个的五位数,其中奇数有多少个.13A44A12343)(72 个有限制条件的有限制条件的排列问题排列问题例例1 1 5名学生和名学生和1名老师站成一排照相,老名老师站成一排照相,老师不能站排头,也不能站排尾,问有多少师不能站排头,也不能站排尾,问有多少种不同的站法?种不同的站法?14A)(480 种55A123454例例2 2 5
4、个人站成一排个人站成一排共有多少种排法?共有多少种排法? 其中甲必须站在中间,有多少种不同的排法?其中甲必须站在中间,有多少种不同的排法? 其中甲、乙两人必须相邻,有多少种不同的其中甲、乙两人必须相邻,有多少种不同的排法?排法? 其中甲、乙两人不相邻,有多少种不同的排其中甲、乙两人不相邻,有多少种不同的排法?法? 其中甲、乙两人不站排头和排尾,有多少种其中甲、乙两人不站排头和排尾,有多少种不同的排法?不同的排法? 其中甲不站排头,乙不站排尾,有多少种不其中甲不站排头,乙不站排尾,有多少种不同的排法?同的排法?例例2 2 5个人站成一排个人站成一排共有多少种排法?共有多少种排法? 其中甲必须站在
5、中间,有多少种不同的排法?其中甲必须站在中间,有多少种不同的排法?解:解: 种排法种排法.12055A 甲的位置已定,其余甲的位置已定,其余4人可任意排列,人可任意排列,有有 种种.2444A例例2 2 5个人站成一排个人站成一排其中甲、乙两人必须相邻,有多少种不同的其中甲、乙两人必须相邻,有多少种不同的排法?排法?解:解: 甲、乙必须相邻,可把甲、乙两人捆绑甲、乙必须相邻,可把甲、乙两人捆绑成一个元素,两人之间有成一个元素,两人之间有 种排法,种排法,22A484422 AA再与其他再与其他3个元素作全排列,共有个元素作全排列,共有 种种排法排法.把须相邻的元素把须相邻的元素 看成一个整体,
6、看成一个整体,称为称为捆绑法捆绑法.例例2 2 5个人站成一排个人站成一排其中甲、乙两人不相邻,有多少种不同的排其中甲、乙两人不相邻,有多少种不同的排法?法?解:解: 让甲、乙以外的三人作全排列,有让甲、乙以外的三人作全排列,有 种排法,种排法,33A再把甲、乙两人插入三人形成的再把甲、乙两人插入三人形成的4个空挡位置,个空挡位置,有有 种方法,共有种方法,共有 种排法种排法.24A722433 AA不相邻问题不相邻问题用用插入法插入法.另解:另解:(排除法排除法)72442255AAA例例2 2 5个人站成一排个人站成一排其中甲、乙两人不站排头和排尾,有多少种其中甲、乙两人不站排头和排尾,有
7、多少种不同的排法?不同的排法?解:解: 甲、乙两人不站排头和排尾,则这两个位置可甲、乙两人不站排头和排尾,则这两个位置可从其余从其余3人中选人中选2人来站,有人来站,有 种排法,剩下的人有种排法,剩下的人有 种排法,共有种排法,共有 种排法种排法.23A33A363323 AA(特殊位置预置法特殊位置预置法)例例2 2 5个人站成一排个人站成一排其中甲不站排头,乙不站排尾,有多少种不其中甲不站排头,乙不站排尾,有多少种不同的排法?同的排法?解:解: 甲站排头有甲站排头有 种排法,乙站排尾有种排法,乙站排尾有 种排法,但两种情况都包含了种排法,但两种情况都包含了“甲站排头,乙甲站排头,乙站排尾站
8、排尾”的情况,有的情况,有 种排法,种排法,所以共有所以共有 种排法种排法.44A44A33A782334455AAA用直接法,如何分类?用直接法,如何分类?一类:甲站排尾一类:甲站排尾二类:甲站中间二类:甲站中间44A331313AAA所以共有所以共有 种排法种排法.7833131344AAAA例例3 3 用用0到到9这十个数字,可以组成多少个没有重这十个数字,可以组成多少个没有重复数字的三位数?复数字的三位数?分析分析1:由于百位上的数字不能为:由于百位上的数字不能为0,只能从,只能从1到到9这这9个数字中任选个数字中任选一个,有一个,有 种选法,再排十位和个位上的数字,可以从余下的种选法
9、,再排十位和个位上的数字,可以从余下的9个数字中任选个数字中任选2个,有个,有 种选法,根据分步计数原理,所求三位种选法,根据分步计数原理,所求三位数的个数是:数的个数是:19A29A6482919 AA分析分析2:所求的三位数可分为:不含数字:所求的三位数可分为:不含数字0的,有的,有 个;含有数字个;含有数字0的,有的,有 个,根据分类计数原理,所求三位数的个数是:个,根据分类计数原理,所求三位数的个数是:39A292A64822939 AA分析分析3:从:从0到到9这十个数字中取这十个数字中取3个的排列数为个的排列数为 ,其中以,其中以0为百为百位数字的排列数为位数字的排列数为 ,故所求
10、三位数的个数是:,故所求三位数的个数是:310A29A64829310 AA(特殊位置预置法特殊位置预置法)(特殊元素预置法特殊元素预置法)(排除法排除法)三、课堂练习:三、课堂练习:1、4个学生和个学生和3个老师排成一排照相,老师不能排两端,个老师排成一排照相,老师不能排两端,且老师必须排在一起的不同排法种数是(且老师必须排在一起的不同排法种数是( ) A . B . C . D .77A3344AA223322AAA333324AAA2、停车场上有一排七个停车位,现有四辆汽车要停放,、停车场上有一排七个停车位,现有四辆汽车要停放,若要使三个空位连在一起,则停放的方法有若要使三个空位连在一起
11、,则停放的方法有 种种.3、用、用0、1、2、3、4、5六个数字,可组成多少个无重六个数字,可组成多少个无重复数字且不能被复数字且不能被5整除的五位数?整除的五位数?4、在、在7名运动员中选出名运动员中选出4名组成接力队,参加名组成接力队,参加4100米米接力赛,那么甲、乙两人都不跑中间两棒的安排方法有接力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种?多少种?D55A法一:法一:)(384341414个AAA)(400252235121245种AAAAAA(1)0,1,2,3,4,5可组成多少个无重复数字可组成多少个无重复数字的五位偶数?的五位偶数?个位数为零:个位数为零:个位数为个位数
12、为2或或4:45A341412AAA 31234141245AAAA所以所以练练 习习 1(2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且能被五整除的五位数?字且能被五整除的五位数?分类:后两位数字为分类:后两位数字为5或或0:个位数为个位数为0:45A个位数为个位数为5:216341445 AAA3414AA (1)三个男生,四个女生排成一排,甲不)三个男生,四个女生排成一排,甲不在最左,乙不在最右,有几种不同方法?在最左,乙不在最右,有几种不同方法?5566772AAA (2)五人从左到右站成一排,其中甲不站排头,)五人从左到右站成一排,其中甲不站排头,乙不站第二个
13、位置,那么不同的站法有(乙不站第二个位置,那么不同的站法有( ) A.120 B.96 C.78 D.72782334455AAA间接4113433378AA A A种直接练练 习习 3(三)相邻问题(三)相邻问题捆绑法捆绑法 对于某几个元素要求相邻的排列问题,可先将相对于某几个元素要求相邻的排列问题,可先将相邻的元素邻的元素“捆绑捆绑”在一起,看作一个在一起,看作一个“大大”的元的元(组),与其它元素排列,然后再对相邻的元素(组)(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。内部进行排列。例例5 7人站成一排照相,要求甲,乙,丙三人相邻,分人站成一排照相,要求甲,乙,丙三人相
14、邻,分别有多少种站法?别有多少种站法?分析:先将甲,乙,丙三人捆绑在一起看作一个元素,分析:先将甲,乙,丙三人捆绑在一起看作一个元素,与其余与其余4人共有人共有5个元素做全排列,有个元素做全排列,有 种排法,然后种排法,然后对甲,乙,丙三人进行全排列。对甲,乙,丙三人进行全排列。55A 种不同排法。种不同排法。5353A A(四)不相邻问题(四)不相邻问题插空法插空法 对于某几个元素不相邻的排列问题,可先将其它对于某几个元素不相邻的排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。之间及两端的空隙之间插入即
15、可。例例6 7人站成一排照相,要求甲,乙,丙三人不相邻,人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?分别有多少种站法?分析:可先让其余分析:可先让其余4人站好,共有人站好,共有 种排法,再在种排法,再在这这4人之间及两端的人之间及两端的5个个“空隙空隙”中选三个位置让甲、中选三个位置让甲、乙、丙插入,则有乙、丙插入,则有 种方法,这样共有种方法,这样共有 种不种不同的排法。同的排法。44A35A3544AA(1)三个男生,四个女生排成一排,男生、女)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?生各站一起,有几种不同方法?2三个男生,四个女生排成一排,三个男生
16、,四个女生排成一排,男生之间、男生之间、女生之间不相邻,有几种不同排法?女生之间不相邻,有几种不同排法?捆绑法:捆绑法:443322AAA 4433AA 插空法:插空法:3如果有两个男生、四个女生排成一排,要如果有两个男生、四个女生排成一排,要 求男求男生之间不相邻,有几种不同排法?生之间不相邻,有几种不同排法?2544AA 插空法:插空法:练练 习习 4例例7 有有4名男生,名男生,3名女生。名女生。3名女生名女生高矮互不等,高矮互不等,将将7名学生排成一行,要求从左到右,女生从矮到高名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?排列,有多少种排法?(五)顺序固定问题用(五)
17、顺序固定问题用“除法除法” 对于某几个元素顺序一定的排列问题,可先将对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数排列数除以这几个元素的全排列数.所以共有所以共有 种。种。 473377AAA分析:先在分析:先在7个位置上作全排列,有个位置上作全排列,有 种排法。其中种排法。其中3个女生因要求个女生因要求“从矮到高从矮到高”排,只有一种顺序故排,只有一种顺序故 只只对应一种排法,对应一种排法,33A77A(1) 五人排队,甲在乙前面的排法有几种?五人排队,甲在乙前面的排法有几种?练练 习习 52三个男生,四个女生排成一排,其中三个男生,四个女生排成一排,其中甲、乙、丙甲、乙、丙三人的顺序不变,有几种不同排法?三人的顺序不变,有几种不同排法?473377AAA分析:若不考虑限制条件,则有分析:若不考虑限制条件,则有 种排法,而甲,种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 火锅底料与配菜套装行业深度调研及发展战略咨询报告
- 智能电动牙刷与口腔健康监测行业深度调研及发展战略咨询报告
- 固涩药企业县域市场拓展与下沉战略研究报告
- 智能宠物行为训练器行业跨境出海战略研究报告
- 磷霉素钙片企业县域市场拓展与下沉战略研究报告
- 智能游泳手环心率监测版企业制定与实施新质生产力战略研究报告
- 2025年音乐流媒体平台版权运营与市场占有率研究报告
- 玫瑰花瓣风味坚果行业深度调研及发展战略咨询报告
- 工业互联网平台传感器网络自组网技术在全球范围内的竞争格局分析
- 天然气水合物开采设备创新2025年技术预研报告
- 《常见疾病康复》第一章常见功能障碍康复-1~3节
- GB/T 2421.1-2008电工电子产品环境试验概述和指南
- GB/T 21206-2007线路柱式绝缘子特性
- GB/T 2087-2001圆柱螺旋拉伸弹簧尺寸及参数(半圆钩环型)
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 数字货币MASK发行机制收益制度解读课件
- 2023年BIM工程师继续教育题库含答案【b卷】
- 20章-过渡金属(Ⅰ)-钛钒铬锰讲解课件
- 吹膜机技术和使用说明
- 幼儿园绘本故事:《小熊不刷牙》 课件
- 物质安全数据表(MSDS)(车用尿素溶液)
评论
0/150
提交评论