



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。拓扑学的由来拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等
2、都是拓扑学发展史的重要问题。1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成能不能用一笔就把这个图形画出来。欧拉考察了一笔画图形的结构特征。发现,凡是能用一笔画成的图形,都有这样一个特点:每当你用笔画一条线进入中间的一个点时,你还必须画一条线离开这个点。否则,整个图形就不可能用一笔画出。也就是说,单独考察图中的任何一个点(除起点和终点外),它都应该与偶数条线相连;如果起点与终点重合,那么,连这个点也应该与偶数条线相连。于是
3、,欧拉得出结论不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 七桥问题是一个几何问题,然而,它却是一个以前欧氏几何学里没有研究过的几何问题。在以前的几何学里,不论怎样移动图形,它的大小和形状都是不变的;而欧拉在解决七桥问题时,把陆地变成了点,桥梁变成了线,而且线段的长短曲直,交点的准确方位、面积、体积等概念,都变得没有意义了。不管把七桥画成别的什么类似的形状,照样可以得出与欧拉一样的结论。 很清楚,图中什么都可以变,唯独点线之间的相关位置,或相互连结的情况不能变。事实上,欧氏几何研究的是在正交变换下的不变性和不变量。如,长度、
4、角度、面积等。而一笔画问题则是在“弹性变形”下的不变性和不变量。在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“
5、看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。18781880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问
6、世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者
7、形状都允许发生变化。在拓扑学里,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 什么是拓扑学?拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的数学名词把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之
8、间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都是不关心的。首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。下图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,就称为拓扑等价。事实上,环面和球面具有不同的拓扑性质。比如像下图那样,把环面切开,它不至于分
9、成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(17901868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不再介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓
10、扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究曲线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Pythontkinter实现桌面软件流程详解
- 建材销售季度工作总结模版
- 培训班结业仪式
- 中外医学研究计划
- 小学级部主任工作总结模版
- 2025外地务工人员雇佣合同书模板
- 企业公司法实务培训体系
- 大型促销活动激励方案
- 中班数学《找等量》教学课件设计
- 安全小纽扣旅行记
- 11《杠杆》教学设计-2023-2024学年科学五年级下册人教鄂教版
- 阳光心理-健康人生小学生心理健康主题班会课件
- 乐理知识考试题库130题(含答案)
- 2023年广东广州中考满分作文《一样的舞台不一样的我》
- 2024年共青团入团积极分子团校结业考试试题库及答案
- 小学五年级数学奥林匹克竞赛试卷及答案
- 人教PEP版英语六上Unit 5《What does he do》(B Let's learn)说课稿
- DL∕T 5494-2014 电力工程场地地震安全性评价规程
- DL∕T 1630-2016 气体绝缘金属封闭开关设备局部放电特高频检测技术规范
- 2024年西藏自治区初中学业水平考试化学实验操作考试
- 公园设施维修投标方案
评论
0/150
提交评论