全等三角形的专题_第1页
全等三角形的专题_第2页
全等三角形的专题_第3页
全等三角形的专题_第4页
全等三角形的专题_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造两条边之间的相等,两个角之间的相等。1 、添加辅助线的方法和语言表述(1)作线段:连接;(2)作平行线:过点作/;(3)作垂线(作高):过点作 !,垂足为;(4)作中线:取中点,连接;(5)延长并截取线段:延长使等于;(6)截取等长线段:在上截取,使等于;(7)作角平分线:作平分;作角等于已知角;(8)作一个角等于已知角:作角等于。2、全等三角形中的基本图形的构造与运用( 1)倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形( 2)截长补

2、短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段3)角平分线:以角平分线为对称轴利用”轴对称性“构造全等三角形,利用的思维模式是三角形全等变换中的“对折”。可以在角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等

3、三角形。可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。(4) 一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。(5) 角含半角、等腰三角形的(绕顶点)旋转重合法:)图形补全:有一个角为60°或120°的,把该角添线后构成等边三角形。7 / 6、倍长中线1、已知,如图 ABC中,AB=5, AC=3则中线 AD的取值范围是 2、如图, ABC中,E、F分别在 AB AC上,DEI DF, D是中点,比较 BE+C* EF的大小.二、截长补短3、如图,

4、AD/ BC, EA,EB分别平分/ DAB,/CBA CD过点 E,求证;AB = AD+BC4: 如图, ABC 中,/ C=2/ B, / 1 = 7 2。求证:AB=AC+CD.B C B三、角平分线造全等6、如图,在四边形 ABCD43,2J E £4CBC> BA,AD= CD BD平分 L=J ,求证:1 5、如图,在四边形 ABCD, BC> BA,AA CD BD平分,求证:四、“K”字图、弦图、三垂图由 AB段 BCDI出BC=BE+ED=AB+CDED=AE-CD五、旋转(一)、含半角绕顶点旋转如图,四边形 ABC虚止方形,方法:延长其中一个补角的线

5、段(延长延长CB到F,使FB=DN,连AF )V ENEC=AB-CDE/1M1CD至U E,使 ED=BM 连 AE或,"结论: MN=BM+DN AM AN分别平分 / BMNF口 / DNM翻折:AI)方£MC思路:分别将 ABMF口 ADNA AMD AN为对称轴翻折,但一且 AB=AD一定要证明 MP、N三点共线.(/B+/ D=180°(二)、等腰三角形绕顶点旋转ABE ACF均为等边三角形结论:(1) ABF AE(C(2) / B0E=Z BAE=60 (“八字型"模型证明)(3) OA平分/ EOF拓展: 条件: ABCCDE匀为等边三

6、角形结论:(1)、AD=BE (2)、/ACBhAOB(3)、PCQ等边三角形(4)、PQ/ AE(5)、AP=BQ (6)、C0¥ Z AOE (7)、OA=OB+OC(8)、OE=OC+OD(7) , (8)需构造等边三角形证明)条件: ABDACE匀为等腰直角三角形结论:(1)、BE=CD (2) BEL CD条件:ABE林口 ACH明为正方形结论:(1)、BDL CF (2)、BD=CF变形一:ABE林口 ACH明为正方形, ASL BC交FD于T,求证:T为FD的中点.方法一:方法方法三:变形二:ABE林口 ACH明为正方形,M为FD的中点,求证: AN! BC练习巩固1、

7、如图在 ABC中,AB>AC, / 1 = /2, P 为 AD上任意一点,求证;AB-AC>PB-PC2、如图, ABC中,BD=DC=ACE是DC的中点,求证: AD平分/ BAE.3、已知:如图, El是等边三角形,I X】 ,求证:4、如图,已知在 ABC中,/ B=60° , ABC的角平分线 AD,CE相交于点 O,求证:OE=OD5、已知:正方形ABCD中,/ MAN=45° , / MAN绕点A顺时针旋转,它的两边分别交CB、 DC (或它们的延长线)于点M N.(1)当/ MAN绕点A旋转至ij BM=DN时(如图1),易证BM+DN=MN(2)当/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论