九年级数学_动点型问题_第1页
九年级数学_动点型问题_第2页
九年级数学_动点型问题_第3页
九年级数学_动点型问题_第4页
九年级数学_动点型问题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.所谓“动点型问题”是指:题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.2.一般方法是:第一、抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中变量的变化情况并找出相关常量。第二、按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用含自变量的式子表达出来,然后再根据题目的要求,依据数学知识解出。3.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想。(以静制动,静中找等)巩固练习:1.如图,在直角梯形ABCD中,ADBC,B=90°,AD=24cm,AB=8c

2、m,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?2. 如图,ABC中,点O为AC边上的一个动点,过点O作直线MNBC,设MN交BCA的外角平分线CF于点F,交ACB内角平分线CE于E(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使

3、四边形AECF是正方形,猜想ABC的形状并证明你的结论。附答案:内容再现答案1.题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.2.“不变量”;相关的量用一个自变量的表达式; 自变量的取值范围。3. 分类思想 函数思想 方程思想 数形结合思想 转化思想巩固练习答案:解析:(1)四边形PQCD为平行四边形时PD=CQ(2)四边形PQCD为等腰梯形时QC-PD=2CE(3)四边形PQCD为直角梯形时QC-PD=EC所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可解:(1)四边形PQCD平行为四边形

4、PD=CQ24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形(2)过D作DEBC于E则四边形ABED为矩形BE=AD=24cmEC=BC-BE=2cm四边形PQCD为等腰梯形QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形2. 解析:(1)根据CE平分ACB,MNBC,找到相等的角,即OEC=ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO(2)利用

5、矩形的判定解答,即有一个内角是直角的平行四边形是矩形(3)利用已知条件及正方形的性质解答解:(1)CE平分ACB,ACE=BCE,MNBC,OEC=ECB,OEC=OCE,OE=OC,同理,OC=OF,OE=OF(2)当点O运动到AC中点处时,四边形AECF是矩形如图AO=CO,EO=FO,四边形AECF为平行四边形,CE平分ACB,ACE= ACB,同理,ACF=ACG,ECF=ACE+ACF=(ACB+ACG)=×180°=90°,四边形AECF是矩形(3)ABC是直角三角形四边形AECF是正方形,ACEN,故AOM=90°,MNBC,BCA=AOM

6、,BCA=90°,ABC是直角三角形三、知识点梳理注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。四、讲练结合1.建立动点问题的函数解析

7、式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析。(1)运用勾股定理建立函数解析式【同步练习】1. 如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果BAC=30°,DAE=105°,试确定与之间的函数解析式;AEDCB图2 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解

8、析式还成立?试说明理由。(2)运用求图形面积的方法建立函数解析式ABCO图3H【例2】如图3,在ABC中,BAC=90°,AB=AC=,A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域;(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积。【同步练习】2. 如图4所示,直线与坐标轴分别交于两点,动点同时从点出发,到达点,同时运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标

9、,并直接写出以点为顶点的平行四边形的第四个顶点的坐标。xAOQPBy图 42.动态几何题目动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。以动态几何为主线的题目【例3】如图5,中,点在边上,且,以点为顶点作,分别交边于点,交射线于点(1)当时,求的长; (2)当以点为圆心长为半径的和以点为圆心长为半径的相切时,求的长;(3)当以边为直径的

10、与线段相切时,求的长。 图 5【同步练习】3.如图6所示,在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把ABE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;(2)若直线l与AB相交于点F,且AOAC,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;ABCDEOlA探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由。 图 6【例5】如图9,在等腰直角三角形ABC中,斜边BC=4,OABC于O,点E和点F分别在边AB、AC上滑动并保持

11、AE=CF,但点F不与A、C重合,点E不与B、A重合。(1)判断OEF的形状,并加以证明。(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值. AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。【同步练习】5. 已知ABC为直角三角形,AC=5,BC=12,ACB为直角,P是AB边上的动点(与点A、B不重合),Q是BC边上动点(与点B、C不重合)(1)如图10,当PQAC,且Q为BC的中点,求线段CP的长。(2)当PQ与AC不平行时, CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说

12、明理由。【同步练习】6.如图12所示,在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和(1)求此二次函数的表达式; yCxBA图12(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由; (3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围。五、家庭作业1. 如图13,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,CE=。 (1)如果BAC=3

13、0°,DAE=105°,试确定与之间的函数解析式;AEDCB图13 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时(1)中与之间的函数解析式还成立?试说明理由。2. 如图14,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设OMN的面积为S,直线l运动时间为t秒(0t6),试求S与t的函数表达式; (3)在题(2)的条件下,t为何值时,S的面积

14、最大?最大面积是多少? 图 14附答案例题答案:1. 解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在RtPOH中, , .在RtMPH中,.=GP=MP= (0<<6).(3)PGH是等腰三角形有三种可能情况:GP=PH时,解得. 经检验, 是原方程的根,且符合题意.GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.PH=GH时,.综上所述,如果PGH是等腰三角形,那么线段PH的长为或2.2. 解:(1)过点A作AHBC,垂足为H.BAC=90°,AB=AC=, BC

15、=4,AH=BC=2. OC=4-., ().(2)当O与A外切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.当O与A内切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.综上所述,当O与A相切时,AOC的面积为或.3. 解:(1) 证明 ,代入数据得,AF=2(2)设BE=,则利用(1)的方法, 相切时分外切和内切两种情况考虑: 外切,;内切,当和相切时,的长为或(3)当以边为直径的与线段相切时,4. 解析:要使三角形ABC的面积最大,而三角形ABC的底边AB为圆的直径为常量,只需AB边上的高最大即可。过点C作CDAB于点D,连结CO,由于CDCO

16、,当O与D重合,CD=CO,因此,当CO与AB垂直时,即C为半圆弧的中点时,其三角形ABC的面积最大。本题也可以先猜想,点C为半圆弧的中点时,三角形ABC的面积最大,故只需另选一个位置C1(不与C重合),证明三角形ABC的面积大于三角形ABC1的面积即可。如图显然三角形 ABC1的面积=AB×C1D,而C1D< C1O=CO,则三角形 ABC1的面积=AB×C1D<AB×C1O=三角形 ABC的面积,因此,对于除点C外的任意点C1,都有三角形 ABC1的面积小于三角形三角形 ABC的面积,故点C为半圆中点时,三角形ABC面积最大.本题还可研究三角形AB

17、C的周长何时最大的问题。5. 分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E、F分别为AB、AC中点,显然有EOF为等腰直角三角形。还可发现当点E与A无限接近时,点F与点C无限接近,此时EOF无限接近AOC,而AOC为等腰直角三角形,几种特殊情况都可以得出EOF为等腰直角三角形。一般情况下成立吗?OE与OF相等吗?EOF为直角吗?能否证明。如果它们成立,便可以推出三角形OFC与三角形OEA全等,一般情况下这两个三角形全等吗?(1):OA=OC,OCF=OAE,而AE=CF,则OEAOFC,则OE=OF,且FOC=EOA,所以EOF=EOA+AOF=FOC+FOA=900,则EOF为直

18、角,故EOF为等腰直角三角形。 (2)可以建立四边形AEOF与AE长的函数关系式,如设AE=x,则AF=,而三角形AOB的面积与三角形AOE的面积之比=,而三角形AOB的面积=,则三角形AOE的面积=,同理三角形AOF的面积=,因此四边形AEOF的面积=;即AEOF的面积不会随点E、F的变化而变化,是一个定值,且为2. (3)解法一:可以通过建立函数关系求得, AEF的面积=,又x的变化范围为,由二次函数知识得AEF的面积的范围为:0<AEF的面积1解法二:根据三角形AEF与三角形OEF的面积关系确定AEF的面积范围:不难证明AEF的面积OEF的面积,它们公用边EF,取EF的中点H,显然

19、由于OEF为等腰直角三角形,则OHEF,作AGEF,显然AGAH=AG(=),所以AEF的面积OEF的面积,而它们的和为2,因此0<AEF的面积1。6. 解:(1)由已知可得: 解之得,因而得,抛物线的解析式为:(2)存在设点的坐标为,则,要使,则有,即解之得,当时,即为点,所以得要使,则有,即解之得,当时,即为点,当时,所以得故存在两个点使得与相似点的坐标为(3)在中,因为所以当点的坐标为时,所以因此,都是直角三角形又在中,因为所以即有所以,又因为,所以同步练习答案1. 解:(1)在ABC中,AB=AC,BAC=30°, ABC=ACB=75°, ABD=ACE=1

20、05°.BAC=30°,DAE=105°, DAB+CAE=75°, 又DAB+ADB=ABC=75°, CAE=ADB, ADBEAC, , , .(2)由于DAB+CAE=,又DAB+ADB=ABC=,且函数关系式成立,=, 整理得.当时,函数解析式成立.2. 解(1)A(8,0)B(0,6)(2)点由到的时间是(秒)点的速度是(单位/秒)当在线段上运动(或0)时,当在线段上运动(或)时,,如图,作于点,由,得, (自变量取值范围写对给1分,否则不给分)(3)3. (1)A是矩形ABCD的对称中心ABAAACABAB,AB3AC6 (2),

21、 ()若圆A与直线l相切,则,(舍去),不存在这样的,使圆A与直线l相切4. 解:(1)由于AB=OA=OB,所以三角形AOB为等边三角形,则AOB=600,即AOB的大小不会随点A、B的变化而变化。(2)四边形ABCD的面积由三个三角形组成,其中三角形AOB的面积为,而三角形AOD与三角形BOC的面积之和为,又由梯形的中位线定理得三角形AOD与三角形BOC的面积之和,要四边形ABCD的面积最大,只需EH最大,显然EHOE=,当ABCD时,EH=OE,因此四边形ABCD的面积最大值为5. 解析:(1)很易得出P为AB中点,则CP=(2)如果CPQ为直角三角形,由于PQ与AC不平行,则Q不可能为

22、直角又点P不与A重合,则PCQ也不可能为直角,只能是CPQ为直角,即以CQ为直径的圆与AB有交点,设CQ=2x,CQ的中点D到AB的距离DM不大于CD,即,所以,由,即,而,故,亦即时, CPQ可能为直角三角形。6.解析:(1)二次函数图象顶点的横坐标为1,且过点和,由解得此二次函数的表达式为(2)假设存在直线与线段交于点(不与点重合),使得以为顶点的三角形与相似yxBEAOCD在中,令,则由,解得令,得设过点的直线交于点,过点作轴于点点的坐标为,点的坐标为,点的坐标为要使或,已有,则只需,或成立若是,则有而在中,由勾股定理,得解得(负值舍去)点的坐标为将点的坐标代入中,求得满足条件的直线的函

23、数表达式为或求出直线的函数表达式为,则与直线平行的直线的函数表达式为此时易知,再求出直线的函数表达式为联立求得点的坐标为若是,则有而在中,由勾股定理,得解得(负值舍去)点的坐标为将点的坐标代入中,求得满足条件的直线的函数表达式为存在直线或与线段交于点(不与点重合),使得以为顶点的三角形与相似,且点的坐标分别为或(3)设过点的直线与该二次函数的图象交于点将点的坐标代入中,求得此直线的函数表达式为设点的坐标为,并代入,得xBEAOCP·解得(不合题意,舍去)点的坐标为此时,锐角又二次函数的对称轴为,点关于对称轴对称的点的坐标为当时,锐角;当时,锐角;当时,锐角家庭作业答案:1. 解:(1)在ABC中,AB=AC,BAC=30°, ABC=ACB=75°, ABD=ACE=105°.BAC=30°,DAE=105°, DAB+CAE=75°, 又DAB+ADB=ABC=75°, CAE=ADB, ADBEAC, , , .(2)由于DAB+CAE=,又DAB+ADB=ABC=,且函数关系式成立,=, 整理得.当时,函数解析式成立.2. (1)分析:由菱形的性质、三角函数易求A、B两点的坐标. 解:四边形OABC为菱形,点C的坐标为(4,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论